K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)

ta có : \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\\\left(z+1\right)^2\ge0\forall z\end{matrix}\right.\) \(\Rightarrow\) \(\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\\\left(z+1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)

vậy \(x=1;y=-2;z=-1\)

4 tháng 8 2017

\(x^2+3y^2+2z^2-2z+12y+4z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(3y^2+12y+12\right)+\left(2z^2-4z+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+3\left(y+4\right)^2+2\left(z-2\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-4\\z=2\end{matrix}\right.\)

1 tháng 11 2018

\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(x^2-2x+1+\left(\sqrt{3}y\right)^2+2.6.y+\left(2\sqrt{3}\right)^2+\left(\sqrt{2}z\right)^2+2.2.z+\left(\sqrt{2}\right)^2=0\)

\(\left(x-1\right)^2+\left(\sqrt{3}y+2\sqrt{3}\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)

\(\Rightarrow x=1;y=-2;z=-1\)

1 tháng 11 2018

<=>(x2-2x+1)+(3y2+12y+12)+(2z2+4z+2)=0

<=>(x-1)2+3(y+2)2+2(z+1)2=0

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\3\left(y+2\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=-1\end{cases}}}\)

27 tháng 6 2018

a. \(x^2+4y^2+z^2=2x+12y-4z-14\)

\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)

20 tháng 1 2020

Chia nhỏ ra bạn ơi!

\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)

\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)

\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)

\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)

\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)

Vậy: \(x=1;y=-2;z=-1\)

5 tháng 8 2017

Bài 1:

\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(\Leftrightarrow x^2-2x+1+3y^2+12y+12+2z^2+4z+2=0\)

\(\Leftrightarrow\left(x-1\right)^2+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)

Dễ thấy: \(\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0\)

Xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\3\left(y+2\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)

Bài 2:

a)\(A=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2-4xy+10x+4y^2-20y+25+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

b)\(B=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+15\)

\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)

Đặt \(t=x^2-5x+4\) thì ta có:

\(t\left(t+2\right)+15=t^2+2t+1+14\)

\(=\left(t+1\right)^2+14\ge14\)

Xảy ra khi \(t=-1 \)\(\Rightarrow x^2-5x+4=-1\Rightarrow x=\dfrac{5\pm\sqrt{5}}{2}\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

Bài 1:

$A=2x^2+y^2-2xy+x+2=(x^2+y^2-2xy)+(x^2+x+\frac{1}{4})+\frac{7}{4}$

$=(x-y)^2+(x+\frac{1}{2})^2+\frac{7}{4}$

Vì $(x-y)^2\geq 0; (x+\frac{1}{2})^2\geq 0$ với mọi $x,y$

$\Rightarrow A\geq 0+0+\frac{7}{4}=\frac{7}{4}$
Vậy $A_{\min}=\frac{7}{4}$. Giá trị này đạt được khi $x-y=x+\frac{1}{2}=0$

$\Leftrightarrow x=y=\frac{-1}{2}$

AH
Akai Haruma
Giáo viên
11 tháng 9 2023

Bài 2:

$B=x^2+9y^2+4z^2-2x+12y-4z+20$

$=(x^2-2x+1)+(9y^2+12y+4)+(4z^2-4z+1)+14$

$=(x-1)^2+(3y+2)^2+(2z-1)^2+14$
Vì $(x-1)^2\geq 0; (3y+2)^2\geq 0; (2z-1)^2\geq 0$ với mọi $x,y,z$

$\Rightarrow B\geq 0+0+0+14=14$

Vậy $B_{\min}=14$. Giá trị này đạt được khi $x-1=3y+2=2z-1=0$

$\Leftrightarrow x=1; y=\frac{-2}{3}; z=\frac{1}{2}$

7 tháng 8 2017

\(x^2+9y^2+4z^2-2x+12y-4z+20=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\)(1)

Ta thấy\(\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\forall x;y;z\)

Nên dấu (1) không thể xảy ra , Hay \(x;y;z\) ko tồn tại (đpcm)