K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

Chia nhỏ ra bạn ơi!

\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)

\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)

\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)

\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)

\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)

Vậy: \(x=1;y=-2;z=-1\)

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

1 tháng 11 2018

\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(x^2-2x+1+\left(\sqrt{3}y\right)^2+2.6.y+\left(2\sqrt{3}\right)^2+\left(\sqrt{2}z\right)^2+2.2.z+\left(\sqrt{2}\right)^2=0\)

\(\left(x-1\right)^2+\left(\sqrt{3}y+2\sqrt{3}\right)^2+\left(\sqrt{2}z+\sqrt{2}\right)^2=0\)

\(\Rightarrow x=1;y=-2;z=-1\)

1 tháng 11 2018

<=>(x2-2x+1)+(3y2+12y+12)+(2z2+4z+2)=0

<=>(x-1)2+3(y+2)2+2(z+1)2=0

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\3\left(y+2\right)^2\ge0\\2\left(z+1\right)^2\ge0\end{cases}\Rightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=-1\end{cases}}}\)

27 tháng 6 2018

a. \(x^2+4y^2+z^2=2x+12y-4z-14\)

\(\Leftrightarrow x^2+4y^2+z^2-2x-12y+4z+14=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2-12y+9\right)+\left(z^2+4z+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)

Ta có: \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\\left(2y-3\right)^2\ge0\\\left(z+2\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-3=0\\z+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

b. \(x^2+3y^2+2z^2-2x+12y+4z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)

10 tháng 12 2019

Ta có:

\(x^2+y^2+2z^2+4x-4y-6z-2xz+9=0\)

\(\Leftrightarrow\left(z^2-2z+1\right)+\left(y^2-4y+4\right)+\left(x^2+z^2+4-2xz+4x-4z\right)=0\)

\(\Leftrightarrow\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2=0\)

\(\left(z-1\right)^2\ge0\) với mọi z

\(\left(y-2\right)^2\ge0\) với mọi y

\(\left(x-z+2\right)^2\ge0\) với mọi x, z

Suy ra \(\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2\ge0\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left(z-1\right)^2=0\\\left(y-2\right)^2=0\\\left(x-z+2\right)^2=0\end{matrix}\right.\)

Hay \(\left(z-1\right)^2+\left(y-2\right)^2+\left(x-z+2\right)^2=0\) khi \(\left[{}\begin{matrix}\left(z-1\right)^2=0\\\left(y-2\right)^2=0\\\left(x-z+2\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}z-1=0\\y-2=0\\x-z+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}z=1\\y=2\\x-z+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}z=1\\y=2\\x=-1\end{matrix}\right.\)

Vậy \(x=-1\); \(y=2\); \(z=1\)

10 tháng 12 2019

cảm ơn nha !!!!!!!!!!!!!!

24 tháng 1 2020

1)

\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)

\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-2x+1\right)=-19\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)

\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x^2+3x^2-6x^2\right)+\left(3x-3x+12x\right)+\left(1+1-6+19\right)=0\)

\(\Leftrightarrow12x+15=0\)

\(\Leftrightarrow x=-\frac{5}{4}\)

Bài 3:

a: =>(2x-7)(x-2)=0

=>x=7/2 hoặc x=2

b: =>(x-1)(x+2)=0

=>x=1 hoặc x=-2

d: =>2x+3=0

hay x=-3/2

29 tháng 6 2019

a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)

\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )

c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )