Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2013\right)^{2014}=1\)
\(\Rightarrow\orbr{\begin{cases}x-2013=1\\x-2013=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2013+1\\x=-1+2013\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2014\\x=2012\end{cases}}\)
Vậy x=2014 hoặc x=2012
hok tốt
\(a,\frac{x+8}{3}+\frac{x+7}{2}=-\frac{x}{5}\)
\(\Leftrightarrow\frac{10\cdot\left(x+8\right)}{30}+\frac{15\left(x+7\right)}{30}=\frac{-6x}{30}\)
\(\rightarrow10x+80+15x+105=-6x\)
\(\Leftrightarrow31x+185=0\)
\(\Leftrightarrow x=-\frac{185}{31}\)
b,\(b,\frac{x-8}{3}+\frac{x-7}{4}=4+\frac{1-x}{5}\)
\(\Leftrightarrow\frac{20\left(x-8\right)}{60}+\frac{15\left(x-7\right)}{60}=\frac{240}{60}+\frac{12\left(1-x\right)}{60}\)
\(\rightarrow20x-160+15x-105=240+12-12x\)
\(\Leftrightarrow47x-517=0\)\(\Leftrightarrow x=11\)
Thay x= -1
P(-1)=5(-1)^100+5(-1)^99+...+5(-1)+9
=5+(-5)+5+...+(-5)+9
Từ 1 đén 100 có: (100-1):1+1=100. ta có:50 cặp
P(-1)=[5+(-5)]x50+9=0+9=9
Xin lỗi mình làm tắt :)
Thay x= -1
P(-1)=5(-1)^100+5(-1)^99+...+5(-1)+9
=5+(-5)+5+...+(-5)+9
Từ 1 đén 100 có: (100-1):1+1=100. ta có:50 cặp
P(-1)=[5+(-5)]x50+9=0+9=9
Ta sẽ đặt x2 = a , y2 = b (với điều kiện : a , b không âm ) để giảm số mũ xuống
Từ giả thiết suy ra a + b = 2
=> 3x4 + 5x2 y2 + 2y4 + 2y2
= 3a2 + 5ab + 2b2 + 2b
= ( 3a2 + 3ab ) + ( 2ab + 2b2 ) + 2b
= 3a ( a + b ) + 2b ( a + b ) + 2b
= (a+b)(3a+2b)+2b
= 2( 3a + 2b ) + 2b
= 2( 2a + 2b ) + 2a +2b
= 4 . 2 + 2 . 2
= 12
a) \(x^3\left(\frac{-1}{4}x^2y\right).\left(2x^3y^4\right)\)
\(=\left(\frac{-1}{4}.2\right).\left(x^3x^2x^3\right).\left(yy^4\right)\)
\(=\frac{-1}{2}x^8y^5\)
- Hệ số: -1/2
- Bậc: 13
b) \(\left(-3x^2y^3\right).xy^2.\left(\frac{-5}{3}x^3y\right)\)
\(=\left(-3.(\frac{-5}{3})\right).\left(x^2xx^3\right).\left(y^3y^2y\right)\)
\(=5x^6y^6\)
- Hệ số: 5
- Bậc : 12
\(\dfrac{-3}{5}-x=\dfrac{21}{10}\)
\(x=\dfrac{-3}{5}-\dfrac{21}{10}\)
\(x=\)-\(\dfrac{27}{10}\)
\(x:\dfrac{2}{9}=\dfrac{9}{2}\)
\(x.\dfrac{9}{2}=\dfrac{9}{2}\)
\(x=\dfrac{9}{2}:\dfrac{9}{2}\)
\(x=1\)
\(\dfrac{x}{9}=\dfrac{5}{3}\)
\(x.3=5.9\)
\(x.3=45\)
\(x=45:3=15\)
\(x:\left(\dfrac{2}{5}\right)^3=\left(\dfrac{5}{2}\right)^3\)
\(x:\dfrac{8}{125}=\dfrac{125}{8}\)
\(x.\dfrac{125}{8}=\dfrac{125}{8}\)
\(x=\dfrac{125}{8}:\dfrac{125}{8}=1\)
\(A=\frac{1}{2^2}+\cdot\cdot\cdot+\frac{1}{2018^2}\)<\(\frac{1}{1\cdot2}+\cdot\cdot\cdot+\frac{1}{2017\cdot2018}\)
\(\Rightarrow A\)<\(1-\frac{1}{2}+\cdot\cdot\cdot+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A\)<\(1-\frac{1}{2018}\)<\(1\)
+) Nếu \(-3\le x\Leftrightarrow|x-1|=1-x\)
\(|x+3|=-x-3\)
\(pt\Leftrightarrow1-x-x-3=5\)
\(\Leftrightarrow-2x-2=5\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=\frac{-7}{2}\left(tm\right)\)
+) Nếu \(-3< x< 1\Leftrightarrow|x-1|=1-x\)
\(|x+3|=x+3\)
\(pt\Leftrightarrow1-x+x+3=5\)
\(\Leftrightarrow4=5\) ( vô lí )
+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)
\(|x+3|=x+3\)
\(pt\Leftrightarrow x-1+x+3=5\)
\(\Leftrightarrow2x+2=5\)
\(\Leftrightarrow x=\frac{3}{2}\left(tm\right)\)
Vậy ....
Ta có:\(|x-1|\ge0\)
\(|x+3|\ge0\)
Theo bài:
\(|x-1|+|x+3|=5\)
\(\rightarrow x-1+x+3=5\)
\(\rightarrow\left(x+x\right)+[\left(-1\right)+3]=5\)
\(\rightarrow2x+2=5\)
\(\rightarrow2x=5-2\)
\(\rightarrow2x=3\)
\(\rightarrow x=3:2\)
\(\rightarrow x=\frac{3}{2}\)