Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{x(x+3)}=\dfrac{6}{19}\)
\(\Rightarrow\)\(\dfrac{1}{3}.(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{x(x+3)})=\dfrac{6}{19}\)
\(\Rightarrow\)\(\dfrac{1}{3}.(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3})=\dfrac{6}{19}\)
\(\Rightarrow\)\(\dfrac{1}{3}.(\dfrac{1}{1}-\dfrac{1}{x+3})=\dfrac{6}{19}\)
\(\Rightarrow\) \(\dfrac{1}{1}-\dfrac{1}{x+3}=\dfrac{6}{19}:\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{1}{1}-\dfrac{1}{x+3}=\dfrac{18}{19}\)
\(\Rightarrow\) \(\dfrac{1}{x+3}=\dfrac{1}{1}-\dfrac{18}{19}\)
\(\Rightarrow\) \(\dfrac{1}{x+3}=\dfrac{1}{19}\)
\(\Rightarrow\) \(x+3=19\)
\(x=19-3\)
\(x=16\)
Vậy \(x=16\)
Ta chi can tach ra , xong ta luoc bot,neu co so bi thua ra thi ta tinh tong.....
a)
\(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{9}{38}\\ \dfrac{1}{4}-\dfrac{1}{x+3}=\dfrac{9}{38}\\\\ \dfrac{1}{x+3}=\dfrac{1}{4}-\dfrac{9}{38}\\ \dfrac{1}{x+3}=\dfrac{1}{76}\\ x+3=76\\ x=73.\)
b)
\(\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ \dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\\ 2\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ 2.\left(\dfrac{1}{6}-\dfrac{1}{x+1}\right)=\dfrac{2}{9}\\ \dfrac{1}{x+1}=\dfrac{1}{6}-\dfrac{1}{9}=\dfrac{1}{18}\\ x+1=18\\ x=17.\)
\(\dfrac{3}{1\times4}x+\dfrac{3}{4\times7}x+\dfrac{3}{7\times10}x+...+\dfrac{3}{31\times34}x=33\)
\(x\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{31\times34}\right)=33\)
\(x\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)
\(x\left(1-\dfrac{1}{34}\right)=33\)
\(\dfrac{33}{34}x=33\)
\(x=34\)
\(\dfrac{3}{1.4}x+\dfrac{3}{4.7}x+\dfrac{3}{7.10}x+...+\dfrac{3}{31.34}x=33\)
\(x.3\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{31.34}\right)=33\)
\(x.3.\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)
\(x.\left(1-\dfrac{1}{34}\right)=33\)
\(x.\dfrac{33}{34}=33\)
\(x=33:\dfrac{33}{34}=33.\dfrac{34}{33}\)
\(x=34\)
1.
E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)
E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)
E = 1 - \(\dfrac{1}{22}\)
E = \(\dfrac{21}{22}\)
2.
(x - 4)(x - 5) = 0
TH1:
x - 4 = 0 => x = 4
TH2:
x - 5 = 0 => x = 5
Vậy: x = 4 hoặc x = 5
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...................+\dfrac{3}{n\left(n+1\right)}\)
\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.............+\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(\Rightarrow S=1-\dfrac{1}{n+1}< 1\)
\(\Rightarrow S< 1\rightarrowđpcm\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n.\left(n+1\right)}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...-\dfrac{1}{n+1}\)
\(S=1-\dfrac{1}{n+1}\)\(< 1\)
\(\Leftrightarrow S< 1\)
tik cho mik nhé
a) \(4,5:\left[\left(\dfrac{9-10}{6}\right)-\dfrac{9}{5}+\dfrac{12}{5}\right]-\dfrac{1}{7}\)
\(=4,5:\left(\dfrac{-1}{6}-\dfrac{-3}{5}\right)-\dfrac{1}{7}\)
=\(4,5:\left(\dfrac{-5+18}{30}\right)-\dfrac{1}{7}\)
=\(4,5:\dfrac{13}{30}-\dfrac{1}{7}\)=\(\dfrac{135}{13}-\dfrac{1}{7}=\dfrac{932}{91}\)
b) \(\dfrac{13}{3}:\left(\dfrac{1}{4}+\dfrac{5}{4}\right)-\dfrac{20}{3}\)
=\(\dfrac{13}{3}.\dfrac{2}{3}-\dfrac{20}{3}\)=\(\dfrac{26}{9}-\dfrac{20}{3}=\dfrac{26}{9}-\dfrac{60}{9}=\dfrac{-34}{9}\)
c) \(5.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+.....+\dfrac{1}{91.94}\right)\)
\(=5.\left[\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{91}-\dfrac{1}{94}\right)\right]\)
\(=5.\left[\dfrac{1}{3}.\left(1-\dfrac{1}{94}\right)\right]\)
=\(5.\left(\dfrac{1}{3}.\dfrac{93}{94}\right)\)
\(=5.\dfrac{31}{94}=\dfrac{155}{94}\)
Chúc bạn học tốt
5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)
\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)
\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)
\(\dfrac{1}{x}\)=\(\dfrac{1}{17}\):\(\dfrac{92}{17}\) x= 92\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)
3(\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\))=3.\(\dfrac{6}{19}\) \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{18}{19}\) 1-\(\dfrac{1}{x+3}\)=\(\dfrac{18}{19}\) \(\dfrac{1}{x+3}\)=\(\dfrac{1}{19}\) x+3 =19 x=19-3 x=17
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...........+\dfrac{1}{x\left(x+3\right)}=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...........+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+............+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{6}{19}\)
\(\Rightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{6}{19}\)
\(\Rightarrow1-\dfrac{1}{x+3}=\dfrac{6}{19}:\dfrac{1}{3}\)
\(\Rightarrow1-\dfrac{1}{x+3}=\dfrac{18}{19}\)
\(\Rightarrow\dfrac{1}{x+3}=1-\dfrac{18}{19}\)
\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{19}\)
\(\Rightarrow x+3=19\)
\(\Rightarrow x=19-3\)
\(\Rightarrow x=16\)
Vậy \(x=16\) laf giá trị cần tìm