K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2023

A = \(\dfrac{2}{x^2+1}\)

\(\notin\) Z ⇔ 2 không chia hết \(x^2\) + 1

⇒ \(x^2\) + 1 \(\notin\) Ư(2) 

Ư(2)  = 1; 2

⇒ \(x^2\) + 1 ≠ 1; 2 

th1: \(x^2\) + 1 ≠ 1 ⇒ \(x\)≠ 0; 

th2 \(x^2\) + 1  ≠ 2 ⇒ \(x\) \(\ne\) 1 ⇒ \(x\) ≠ \(\pm\) 1

Vây \(x\) \(\ne\) -1; 0; 1

\(a)\)

Để x là số nguyên

\(\Rightarrow\frac{2}{2a+1}\)là số nguyên

\(\Rightarrow2⋮2a+1\Rightarrow2a+1\inƯ\left(2\right)\Rightarrow2a+1\in\left\{\pm1;\pm2\right\}\)

Ta có:

2a+1-2-112
a-3/2-101/2
So sánh điều điện aLoạiTMTMLoại

\(b)\)

Ta có:

\(\frac{6\left(x-1\right)}{3\left(x+1\right)}\) thuộc số nguyên

\(=\frac{6x-1}{3x+1}=\frac{6x+2-3}{3x+1}=\frac{6x+2}{3x+1}-\frac{3}{3x+1}=2-\frac{3}{3x+1}\)

\(\Leftrightarrow3⋮3x+1\Rightarrow3x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(3x+1=1\Leftrightarrow3x=0\Leftrightarrow x=0\left(TM\right)\)

\(3x+1=-1\Leftrightarrow3x=-2\Leftrightarrow x=\frac{-2}{3}\)(Loại)

\(3x+1=3\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(Loại)

\(3x+1=-3\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)(Loại)

8 tháng 11 2021

`(x+1)/(x+2)` nguyên `<=> (x+1)\ vdots (x+2)`

`<=>(x+2)-1\ vdots (x+2)`

`<=>-1\ vdots (x+2)`

`<=>x+2\ in {-1;1}`

`<=>x\ {-3;-1}`.

8 tháng 11 2021

x+1x+2x+1x+2 nguyên ⇔(x+1) ⋮(x+2)⇔(x+1) ⋮(x+2)

⇔(x+2)−1 ⋮(x+2)⇔(x+2)-1 ⋮(x+2)

⇔−1 ⋮(x+2)⇔-1 ⋮(x+2)

⇔x+2 ∈{−1;1}⇔x+2 ∈{-1;1}

⇔x {−3;−1}⇔x {-3;-1}.

chúc bạn học tốt

nhớ kích đúng cho mk nha

16 tháng 7 2018

help me

6 tháng 12 2021

tìm giá trị x để biểu thức nguyên

D=2x-3/x+5 

E=x^2-5/x-3

6 tháng 8 2020

\(B=\frac{1}{x-y}:\frac{x+2}{2\left(x-y\right)}=\frac{1}{x-y}.\frac{2\left(x-y\right)}{x+2}=\frac{2}{x+2}\)

Để B là số nguyên 

=> \(\frac{2}{x+2}\)là số nguyên

=> \(2⋮x+2\)

=> \(x+2\inƯ\left(2\right)\)

=> \(x+2\in\left\{1;-1;2;-2\right\}\)

=> \(x\in\left\{-1;-3;0;-4\right\}\)

Vậy các cặp (x ;y) thỏa mãn là (-1 ; y) ; (-3 ; y) ; (0 ; y) ; (-4 ; y) với mọi y nguyên

3 tháng 6 2016

Ta có:\(\frac{x^2-3}{x^2-1}=\frac{x^2-1-3}{x^2-1}-\frac{x^2-1}{x^2-1}-\frac{2}{x^2-1}=1-\frac{2}{x^2-1}\)

Để \(1-\frac{2}{x^2-1}\)là số nguyên thì \(\frac{2}{x^2-1}\)phải là số nguyên.\(\rightarrow x^2-1\inƯ\left(2\right)=\left\{-1,1,-2,2\right\}\)\(\left(x\in Z\right)\)

Ta xét các trường hợp:

TH1: \(x^2-1=-1\rightarrow x^2=0\Rightarrow x=0\)(thỏa mãn)

TH2:\(x^2-1=1\rightarrow x^2=2\Rightarrow x=\sqrt{2}\)(loại)

TH3:\(x^2-1=-2\rightarrow x^2=-1\Rightarrow\)Không có \(x\)( Vì \(x^2\ge0\)và không thể nhỏ hơn \(0\))

Th4:\(x^2-1=2\rightarrow x^2=3\Rightarrow x=\sqrt{3}\)(loại)

Vậy để \(\frac{x^2-3}{x^2-1}\in Z\)thì \(x=0\).

26 tháng 6 2023

ĐKXĐ: \(x\ne\pm3\)

a

Khi x = 1:

\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)

Khi x = 2:

\(A=\dfrac{3.2+2}{2-3}=-8\)

Khi x = \(\dfrac{5}{2}:\)

\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)

b

Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên

\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)

Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)

c

Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên

\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)

\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)

d

\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)

=> Để A, B cùng là số nguyên thì x = 4.

21 tháng 9 2023

\(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=1+\dfrac{3}{x-2}\)

A là số nguyên khi: \(\dfrac{3}{x-2}\) nguyên 

3 ⋮ x - 2

\(\Rightarrow x-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x\in\left\{3;1;5;-1\right\}\)