K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 8 2023

Lời giải:

Gọi tổng số học sinh khối 7 là $a$ (em).

Theo bài ra ta có: $a-2\vdots 3; a-3\vdots 4; a-4\vdots 5; a-5\vdots 6, a-9\vdots 10$

$\Rightarrow a+1\vdots 3,4,5,6,10$

$\Rightarrow a+1 =BC(3,4,5,6,10)$

$\Rightarrow a+1\vdots BCNN(3,4,5,6,10)$

$\Rightarrow a+1\vdots 60$

$\Rightarrow a+1\in\left\{0; 60; 120; 180; 240; 300;...\right\}$

Mà $a$ trong khoảng từ 235 đến 250 nên $a=240$ (em)

Gọi số học sinh khối 7 là: a

Theo đề bài,

-biết số học sinh chia cho 3 dư 2

=>(a+1)\(⋮\)3

-a chia 4 dư 3

=>(a+1)\(⋮4\)

-a chia cho 5 dư 4

=>(a+1)\(⋮5\)

-a chia cho 6 dư 5

=>(a+1)\(⋮6\)

-a chia 10 dư 9

=>(a+1)\(⋮10\)

Từ đó =>(a+1)\(\in BC\left(3;4;5;6;10\right)\) (và \(236\le a+1\le251\))

BCNN(3;4;5;6;10)=23.3.5=120

<=> BCNN(3;4;5;6;10)=B(120)={0;120;240;360;480;...}

Mà \(236\le a+1\le251\)

=>a+1=240

=>a=240-1

=>a=239

Vậy số học sinh khối 7 ngôi trường đó là 239

1 tháng 8 2018

239 học sinh 

20 tháng 8 2018

239 học sinh

20 tháng 12 2017

 a chia cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5 

\(\Rightarrow\)a + 1 \(⋮\)4,5,6

nên a + 1 \(⋮\) BCNN ( 4,5,6 ) 

\(\Rightarrow\)a + 1 \(⋮\)60

 vì a + 1 \(⋮\)60 \(\Rightarrow\)a + 1 - 300 \(⋮\)60 hay a - 299 \(⋮\)60 ( 1 )

\(⋮\)13 \(\Rightarrow\)a - 13 . 23 \(⋮\)13 hay a - 299 \(⋮\)13 ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a - 299 \(⋮\)BCNN ( 60 ; 13 ) = 780

vậy dạng chung của a là : a = 780k + 299 ( k thuộc N )

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

AH
Akai Haruma
Giáo viên
1 tháng 7 2023

Lời giải:

Gọi $ax+b$ là dư của $F(x)$ khi chia cho $(x+2)(x-5)$

Ta có:

$F(x)=2x(x+2)(x-5)+ax+b(*)$
Theo đề thì $F(-2)=8; F(5)=26$

Thay $x=-2$ vào $(*)$ thì:

$F(-2)=(-2)a+b=8(1)$

$F(5)=5a+b=26(2)$

Từ $(1); (2)\Rightarrow a=\frac{18}{7}; b=\frac{92}{7}$

Khi đó:

$F(x)=2x(x+2)(x-5)+\frac{18}{7}x+\frac{92}{7}$

$=2x^3-6x^2-\frac{122x}{7}+\frac{92}{7}$

 

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Chia $(x+2)(x+5)$ hay $(x+2)(x-5)$ vậy bạn?

29 tháng 6 2023

(x+2)(x-5) ạ, em ghi nhầm