Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\\ \Leftrightarrow1+\frac{1}{2}.3+\frac{1}{3}.6+...+\frac{1}{16}.136\\ \Leftrightarrow1+1,5+2+...+8.5\\ \Leftrightarrow\frac{\left(8,5+1\right)\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)
3.
Theo bài ra ta có:
\(1-\frac{1}{1-x}=\frac{1}{1-x}\\ \Rightarrow\frac{1}{1-x}=1-\frac{1}{1-x}\\ \Rightarrow\frac{1}{1-x}=\frac{1-x}{1-x}-\frac{1}{1-x}\\ \Rightarrow\frac{1}{1-x}=\frac{1-x-1}{1-x}\Rightarrow\frac{1}{1-x}=\frac{-x}{1-x}\\ \Rightarrow1=-x\\ \Rightarrow x=-1\)
a) + Nếu x + y + z = 0 thay vào đề bài ta được x = y = z = 0
+ Nếu x + y + z khác 0, áp dụng t/c của dãy tỉ số = nhau ta có:
x/z+y+1 = y/x+z+1 = z/x+y-2 = x+y+z/(z+y+1)+(x+z+1)+(x+y-2)
= x+y+z/2.(x+y+z) = 1/2 = x+y+z
=> 2x = z+y+1; 2y = x+z+1; 2z = x+y-2
=> 3x = x+y+z+1; 3y = x+y+z+1; 3z=x+y+z-2
=> 3x=1/2+1=3/2; 3y=1/2+1=3/2; 3z=1/2-2=-3/2
=> x=1/6 = y; z = -1/2
b) Theo bài ra ta có:
x + 1/x = k (k thuộc Z)
=> x^2+1/x = k
+ Với k = 0 => x = 0 (thỏa mãn)
+ Với k khác 0, do k nguyên nên x^2+1/x nguyên
=> x^2+1 chia hết cho x
=> 1 chia hết cho x
=> x thuộc {1 ; -1} (thỏa mãn)
Vậy số hữu tỉ x cần tìm là 0; 1; -1
Với a âm thì :
\(\dfrac{1}{a}\) cũng sẽ luôn luôn âm
Với a dương thì:
\(\dfrac{1}{a}\) cũng sẽ luôn luôn dương
Điều này xảy ra vì 1 là số dương,nếu mẫu là âm thì kq âm,và ngược lại
đặt x = \(\frac{a}{b}\)trong đó a,b \(\in\)Z ; a,b \(\ne\)0 ; ( |a| , |b| ) = 1 .
Ta có :
\(\frac{a}{b}+\frac{b}{a}=\frac{a^2+b^2}{ab}\in Z\)\(\Rightarrow\)a2 + b2 \(⋮\)ab ( 1 )
Từ ( 1 ) suy ra b2 \(⋮\)a, mà ( |a|, |b| ) = 1 nên b \(⋮\)a. Cũng do ( |a|,|b| ) = 1 nên a = 1 hoặc a = -1
Cũng chứng minh tương tự như trên, ta được b = 1 hoặc b = 01
Do đó : x = 1 hoặc x = -1
Ta có:
\(x+\frac{1}{x}=\frac{x^2+1}{x}\)
Đểc \(\frac{x^2+1}{x}\) là số nguyên \(\Rightarrow x^2+1\) phải chia hết cho x
Lại có \(x^2\) chia hết cho x
\(\Rightarrow x^2+1-x^2\)chia hết cho x
\(\Rightarrow1\) chia hết cho x
\(\Rightarrow x=1\) hoặc \(x=-1\)
ta có 1-x=-(x-1)
1-x+1=x-1
<=>3=2x
<=>x=2/3
vậy x =2/3
Theo bài ra ta có:1-\(\frac{1}{1-x}\)=\(\frac{1}{1-x}\)
Suy ra:\(\frac{1}{1-x}\)=1-