K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{x+4}{2020}+\dfrac{x+3}{2021}=\dfrac{x+2}{2022}+\dfrac{x+1}{2023}\\ \Rightarrow\dfrac{x+4}{2020}+1+\dfrac{x+3}{2021}+1=\dfrac{x+2}{2022}+1+\dfrac{x+1}{2023}+1\\ \Rightarrow\dfrac{x+2024}{2020}+\dfrac{x+2024}{2021}=\dfrac{x+2024}{2022}+\dfrac{x+2024}{2023}\\ \Rightarrow\dfrac{x+2024}{2020}+\dfrac{x+2024}{2021}-\dfrac{x+2024}{2022}-\dfrac{x+2024}{2023}=0\\ \Rightarrow\left(x+2024\right).\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}-\dfrac{1}{2023}\right)=0\\ \dfrac{1}{2020}>\dfrac{1}{2021}>\dfrac{1}{2022}>\dfrac{1}{2023}\Rightarrow\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}-\dfrac{1}{2023}\right)\ne0\\ \Rightarrow x+2024=0\\ \Rightarrow x=-2024\)

22 tháng 2 2023

a)

`(2x-1)(x+2/3)=0`

\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)

b)

\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)

\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)

\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)

\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)

\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)

22 tháng 2 2023

sai rồi , x không thể có 2 giá trị

1 tháng 12 2023

A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)

Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)

      TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1 

      TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)

      TS =  2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))

A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)

 A = 2023

1 tháng 12 2023

Em cảm ơn ạ

25 tháng 6 2023

\(\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}=-4\)

Vì \(\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}=-4\)

\(\Rightarrow\dfrac{x+23}{2021}+\dfrac{x+22}{2022}+\dfrac{x+21}{2023}+\dfrac{x+20}{2024}+4=0\)

\(\Rightarrow\left(\dfrac{x+23}{2021}+1\right)+\left(\dfrac{x+22}{2022}+1\right)+\left(\dfrac{x+21}{2023}+1\right)+\left(\dfrac{x+20}{2024}+1\right)=0\)

\(\Rightarrow\dfrac{x+2044}{2021}+\dfrac{x+2044}{2022}+\dfrac{x+2044}{2023}+\dfrac{x+2044}{2024}=0\)

\(\Rightarrow\left(x+2044\right)\left(\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{2024}\right)=0\)

\(\Rightarrow x+2044=0\left(\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{2024}\ne0\right)\)

\(\Rightarrow x=-2024\)

\(=\dfrac{\left|x-2020\right|+2022-1}{\left|x-2020\right|+2022}=1-\dfrac{1}{\left|x-2020\right|+2022}\\ mà\left|x-2020\right|\ge0\\ \Rightarrow\left|x-2022\right|+2022\ge2022\) 

\(\Rightarrow\dfrac{1}{\left|x-2020\right|+2022}\le\dfrac{1}{2022}\\ =1-\dfrac{1}{\left|x-2020\right|+2022}\ge1-\dfrac{1}{2022}\\ =\dfrac{2021}{2022}\\ \Rightarrow B_{min}=\dfrac{2021}{2022}.tại.x-2020=0\Rightarrow x=2020\)

25 tháng 3 2022

Xem lại dưới mẫu

16 tháng 7 2023

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

12 tháng 8 2021

Bài tập đâu rồi?

24 tháng 8 2021

\(B=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=-\dfrac{2}{3}\)

24 tháng 8 2021

\(B=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{\dfrac{3}{2020}+\dfrac{3}{2021}-\dfrac{3}{2022}}-1=\dfrac{\dfrac{1}{2021}+\dfrac{1}{2021}-\dfrac{1}{2022}}{3\left(\dfrac{1}{2020}+\dfrac{1}{2021}-\dfrac{1}{2022}\right)}-1=\dfrac{1}{3}-1=\dfrac{1}{3}-\dfrac{3}{3}=-\dfrac{2}{3}\)

23 tháng 8 2023

\(B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{-\dfrac{5bb}{6}}\)

\(=\dfrac{\dfrac{4ab}{6}-\dfrac{9ab}{6}}{-\dfrac{5bb}{6}}\)

\(=\dfrac{-\dfrac{5ab}{6}}{-\dfrac{5bb}{6}}=\dfrac{ab.\dfrac{5}{6}}{bb.\dfrac{5}{6}}\)

\(=\dfrac{ab}{bb}=\dfrac{a}{b}\)

Với \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\), ta được:

\(B=\dfrac{2021}{2022}:\dfrac{2023}{2022}=\dfrac{2021}{2022}.\dfrac{2022}{2023}=\dfrac{2021}{2023}\)

23 tháng 8 2023

Thanks ạ