Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1\cdot99}+\dfrac{1}{3\cdot97}+\dfrac{1}{5\cdot95}+...+\dfrac{1}{97\cdot3}+\dfrac{1}{99\cdot1}}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{100}{1\cdot99}+\dfrac{100}{3\cdot97}+\dfrac{100}{5\cdot95}+...+\dfrac{100}{97\cdot3}+\dfrac{100}{99\cdot1}}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{1+\dfrac{1}{99}+\dfrac{1}{3}+\dfrac{1}{97}+\dfrac{1}{5}+\dfrac{1}{95}+...+\dfrac{1}{97}+\dfrac{1}{3}+\dfrac{1}{99}+1}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}}{2\left(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{97}+\dfrac{1}{99}\right)}\)
\(\Leftrightarrow\dfrac{A}{100}=\dfrac{1}{2}\)
hay A=50
1,
x =( -12 . ( -3) ) : 2
x = 18
2,
a, -7/9 . 6/11 + (-2/9) = -14/33 + (-2/9) = -64/99
b, -4/7 : 2 = -4/7 . 1/2 = -2/7
c, 115 - (24 - 5. 3) = 115 - ( 24 - 15) = 115 - 9 = 106
d,= -3/7. (5/9 + 4/9) + 17/7 = -3/7 . 1 +17/7 = -3/7 . 17/7 = -51/49
e, ??? mình cx k biết
a) \(\dfrac{1+\dfrac{1}{4}}{1-\dfrac{1}{4}}:\dfrac{1+\dfrac{1}{8}}{1-\dfrac{1}{8}}\\ =\dfrac{\dfrac{5}{4}}{\dfrac{3}{4}}:\dfrac{\dfrac{9}{8}}{\dfrac{7}{8}}\\ =\dfrac{5}{3}:\dfrac{9}{7}\\ =\dfrac{5}{3}.\dfrac{9}{7}\\ =\dfrac{35}{27}=1\dfrac{8}{27}\)
b) \(0,25+37\%-2\dfrac{1}{4}\\ =\dfrac{1}{4}+\dfrac{37}{100}-\dfrac{9}{4}\\ =\dfrac{25+37-225}{100}\\ =-\dfrac{163}{100}=-1\dfrac{63}{100}\)
A =\(\dfrac{4^2}{3\times5}\) \(\times\)\(\dfrac{5^2}{4\times6}\) \(\times\) \(\dfrac{6^2}{5\times7}\) \(\times\) \(\dfrac{7^2}{6\times8}\)
A = \(\dfrac{4\times4\times5^2\times6^2\times7\times7}{3\times4\times5^2\times6^2\times7\times8}\)
A = \(\dfrac{4}{3}\) \(\times\) \(\dfrac{7}{8}\)
A = \(\dfrac{7}{6}\)
\(=\dfrac{-5}{12}+\dfrac{5}{12}+\dfrac{6}{11}+\dfrac{5}{11}+\dfrac{7}{18}=1+\dfrac{7}{18}=\dfrac{25}{18}\)
Đặt
\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(S=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(S=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)
\(S=\dfrac{49}{99}\)
\(\Rightarrow\dfrac{1}{x}-\dfrac{1}{9999}=\dfrac{49}{99}\)
\(\Rightarrow\dfrac{1}{x}=\dfrac{50}{101}\Leftrightarrow50x=101\Leftrightarrow x=\dfrac{101}{50}\)
Đặt \(M=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(M=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(M=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\)
\(M=\dfrac{1}{2}\cdot\dfrac{98}{99}\)
\(M=\dfrac{49}{99}\)