Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{10}+x=\frac{3}{5}\)
\(\Rightarrow\frac{2}{5}+x=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b)\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{13}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{2}{3}-\frac{2}{15}+x=\frac{1}{3}\)
\(\Rightarrow\frac{8}{15}+x=\frac{1}{3}\)
\(\Rightarrow x=\frac{1}{3}-\frac{8}{15}=-\frac{1}{5}\)
c)\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{9}{10}\)
\(\Leftrightarrow\frac{x+1-1}{x+1}=\frac{9}{10}\)
\(\Rightarrow\frac{x}{x+1}=\frac{9}{10}\)
\(\Rightarrow x=9\)
b) \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{15-13}{13.15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{15}+x=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{15}\)
Bài 3 :
b) Ta có 1+ 2 + 3 +4 + ...+ x =15
Nên \(\frac{x\left(x+1\right)}{2}=15\)
\(x\left(x+1\right)=30\)
=> \(x\left(x+1\right)=5.6\)
=> x = 5
Bài 2:
h; \(\dfrac{2}{3}\)\(x\) + 50% + \(x\) = \(\dfrac{1}{10}\)
\(\dfrac{2}{3}\)\(x\) + \(\dfrac{1}{2}\) + \(x\) = \(\dfrac{1}{10}\)
(\(\dfrac{2}{3}\)\(x\) + \(x\)) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) (\(\dfrac{2}{3}\) + 1) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) + \(\dfrac{1}{2}\) = \(\dfrac{1}{10}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{1}{10}\) - \(\dfrac{1}{2}\)
\(x\) \(\times\) \(\dfrac{5}{3}\) = \(\dfrac{-2}{5}\)
\(x\) = \(\dfrac{-2}{5}\): \(\dfrac{5}{3}\)
\(x\) = - \(\dfrac{6}{25}\)
Lớp 5 chưa học số âm em nhé.
A) \(2x+12=36\)
\(\Leftrightarrow2x=36-12\)
\(\Leftrightarrow2x=24\)
\(\Leftrightarrow x=12\)
B) \(\left(x+21\right):8+12=20\)
\(\Leftrightarrow\left(x+21\right):8=20-12\)
\(\Leftrightarrow\left(x+21\right):8=8\)
\(\Leftrightarrow x+21=64\)
\(\Leftrightarrow x=43\)
C) \(\frac{1}{2}+\frac{3}{4}x=\frac{3}{2}\)
\(\Leftrightarrow\frac{3}{4}x=\frac{3}{2}-\frac{1}{2}\)
\(\Leftrightarrow\frac{3}{4}x=1\)
\(\Leftrightarrow x=\frac{4}{3}\)
\(a,\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{4}+x+\frac{1}{8}+x+\frac{1}{16}=1\)
\(\Leftrightarrow\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(\Leftrightarrow4\times x+\frac{15}{16}=1\)
\(\Leftrightarrow4\times x=1-\frac{15}{16}\)
\(\Leftrightarrow4\times x=\frac{1}{16}\)
\(\Leftrightarrow x=\frac{1}{16}\div4\)
\(\Leftrightarrow x=\frac{1}{64}\)
\(b,x-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(\Leftrightarrow x-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\left(\frac{1}{11}-\frac{1}{13}-\frac{1}{13}+...+\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\left(\frac{1}{11}-\frac{1}{55}\right)\right]=\frac{3}{11}\)
\(\Leftrightarrow x-\left[715\times\frac{4}{55}\right]=\frac{3}{11}\)
\(\Leftrightarrow x-52=\frac{3}{11}\)
\(\Leftrightarrow x=\frac{3}{11}+52\)
\(\Leftrightarrow x=\frac{575}{11}\)