Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)
\(x=-3;y=6\)
b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)
\(x=-52;y=-65\)
c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)
\(x=28;y=16\)
a ) x + 5/12 = -2/3
=> x = -2/3 - 5/12
=> x = -8/12 - 5/12
=> x = -13/12
b ) 4/5 + 3/4 : x = 1/2
=> 3/4 : x = 1/2 - 4/5
=> 3/4 : x = 5/10 - 8/10
=> 3/4 : x = -3/10
=> x = 3/4 : -3/10
=> x = -5/2
c ) x/2 + x/3 = 1/4
=> 3x/6 + 2x/6 = 1/4
=> ( 3x + 2x )/6 = 1/4
=> 5x/6 = 1/4
=> 20x/24 = 6/24
=> 20x = 6
=> x = 6 : 20
=> x = 0 , 3
Chúc bạn học giỏi !!!
Trả lời :
a, \(\frac{3}{4}-\left(\frac{1}{2}\div x+\frac{1}{2}\right)=\frac{3}{5}\)
=> \(\frac{1}{2}\div x+\frac{1}{2}=\frac{3}{20}\)
=> \(\frac{1}{2}\div x=\frac{-7}{20}\)
=> \(x=\frac{-10}{7}\)
b, (4 - x) . (2x + 3) = 0
=> \(\orbr{\begin{cases}4-x=0\\2x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=4\\x=\frac{-3}{2}\end{cases}}\)
c, \(\frac{4}{-3}=\frac{-12}{x}\)
=> 4x = 36
=> x = 9
d, \(\frac{4x}{-3}=\frac{12}{-x}\)
=> \(-4x^2=-36\)
=> 4x2 = 36
=> x2 = 9
=> x = \(\pm3\)
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
a) \(\dfrac{x}{3}=\dfrac{4}{12}\Rightarrow x=\dfrac{4}{12}\cdot3=\dfrac{12}{12}=1\)
b) \(\dfrac{x-1}{x-2}=\dfrac{3}{5}\) (Điều kiện : \(x\ne2\))
\(\Rightarrow5\left(x-1\right)=3\left(x-2\right)\)
\(\Leftrightarrow5x-5=3x-6\Leftrightarrow5x-3x=-6+5\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
c) \(2x:6=\dfrac{1}{4}\Leftrightarrow2x=\dfrac{1}{4}\cdot6=\dfrac{6}{4}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{2}:2=\dfrac{3}{2}\cdot\dfrac{1}{2}=\dfrac{3}{4}\)
d) \(\dfrac{x^2+x}{2x^2+1}=\dfrac{1}{2}\)
\(\Rightarrow2\left(x^2+x\right)=2x^2+1\)
\(\Leftrightarrow2x^2+2x=2x^2+1\)
\(\Leftrightarrow2x^2+2x-2x^2=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\).
TH1:x < 0 . PT có dạng
\(-4\left(3x-1\right)-x+2\left(x-5\right)-7\left(x-3\right)=12\)
\(4-12x-x+2x-10-7x+21=12\)
\(15-18x=12\)
\(x=\frac{1}{6}\left(koTM\right)\)
TH2:\(0\le x\le\frac{1}{3}\) PT có dạng:
\(x-4\left(3x-1\right)-7\left(x-3\right)+2\left(x-5\right)=12\)
\(x=\frac{3}{16}\left(TM\right)\)
TH3:\(\frac{1}{3}\le x< 3\) PT có dạng:
\(x+4\left(3x-1\right)-7\left(x-3\right)+2\left(x-5\right)=12\)
\(x=\frac{5}{8}\left(TM\right)\)
TH4:\(3\le x< 5\) PT có dạng:
\(4\left(3x-1\right)+x+2\left(x-5\right)+7\left(x-3\right)=12\)
\(x=\frac{47}{22}\left(koTM\right)\)
\(TH5:x\ge5\)PT có dạng:
\(4\left(3x-1\right)+x-2\left(x-5\right)+7\left(x-3\right)=12\)
\(x=1,5\left(koTM\right)\)
Vậy nghiệm PT là \(\frac{3}{16};\frac{5}{8}\)
\(\dfrac{3}{x}\) = \(\dfrac{4}{12}\) (đk \(x\ne\) 0)
\(x\) = 3 : \(\dfrac{4}{12}\)
\(x\) = 9
Vậy \(x=9\)