Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
xy + x - 4y = 12
x + y(x - 4) = 12
y(x - 4) = 12 - x
\(y=\dfrac{-x+12}{x-4}\)
Vì \(x,y\inℕ\) nên
\(\left(-x+12\right)⋮\left(x-4\right)\)
\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)
\(16⋮\left(x-4\right)\)
\(\left(x-4\right)\inƯ\left(16\right)\)
\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)
\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)
\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)
\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)
2)
(2x + 3)(y - 2) = 15
\(\left(2x+3\right)\inƯ\left(15\right)\)
\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
Ta lập bảng
2x + 3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
y - 2 | 15 | -15 | 5 | -5 | 3 | -3 | 1 | -1 |
(x; y) | (-1; 17) | (-2; -13) | (0; 7) | (-3; -3) | (1; 5) | (-4; -1) | (6; 3) | (-9; 1) |
Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)
\(\Rightarrow\hept{\begin{cases}2x-3=5\\2x-3=-5\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-1\end{cases}}}\)
(2x-3)2=25
=>2x-3=5 hoặc 2x-3=-5
=> 2x= 8 hoặc 2x= -2
=> x=4 hoặc x=-1
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{2x}{10.2}=\frac{3y}{15.3}=\frac{z}{21}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{21}=\frac{2x+3y+z}{20+45+21}=\frac{172}{86}=2\)
\(\frac{x}{10}=2\Rightarrow x=2.10=20\)
\(\frac{y}{15}=2\Rightarrow y=2.15=30\)
\(\frac{z}{21}=2\Rightarrow z=2.21=42\)
Vậy x=20 ; y=30 và z=42
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a) \(\frac{0,5}{0,2}=\frac{1,25}{0,1x}\Leftrightarrow0,1x.0,5=0,2.1,25\)
\(\Leftrightarrow0,1x.0,5=0,25\Leftrightarrow0,1x=0,5\Leftrightarrow x=5\)
b) \(x-\frac{3}{2}=2x-\frac{4}{3}\Leftrightarrow x-2x=\frac{-4}{3}+\frac{3}{2}\)
\(\Leftrightarrow x-2x=\frac{1}{6}\Leftrightarrow-x=\frac{1}{6}\Leftrightarrow x=\frac{-1}{6}\)
c) \(x+\frac{13}{14}=\frac{4}{7}\Rightarrow x=\frac{4}{7}-\frac{13}{14}\Rightarrow x=\frac{-5}{14}\)
d)\(-3\left(x-2\right)=2x+1\)
\(\Leftrightarrow-3x+6=2x+1\Leftrightarrow-3x-2x=1-6\)
\(\Leftrightarrow-5x=-5\Leftrightarrow x=1\)
e) \(\left(x-1\right)^2-4=0\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2\\x-1=\left(-2\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
cậu có thể tham khảo bài trên ạ, nếu thấy đúng thì cho mk 1 t.i.c.k ạ, thank nhiều
\(d,-3\left(x-2\right)=2x+1\)
\(< =>-3x+6=2x+1\)
\(< =>-3x-2x+6-1=0\)
\(< =>5-5x=0\)
\(< =>5\left(1-x\right)=0< =>x=1\)
\(e,\left(x-1\right)^2-4=0\)
\(< =>\left(x-1+2\right)\left(x-1-2\right)=\left(x+1\right)\left(x-3\right)=0\)
\(< =>\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}< =>\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
Ta có
2x/3y=-1/3
2x/(-1)=3y/3
Áp dụng tính chất của dãy tỉ số bằng nhau
2x/(-1)=3y/3<=>2x+3y/(-1)+3=7/2
=>2x/(-1)=7/2=>x= -7/2
3y/3=7/2=>y=7/2
Ta có : \(\frac{2x}{3y}=\frac{-1}{3}\Leftrightarrow6x=-3y\Leftrightarrow\frac{x}{-3}=\frac{y}{6}\Leftrightarrow\frac{2x}{-6}=\frac{3y}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{-6}=\frac{3y}{18}=\frac{2x+3y}{-6+18}=\frac{7}{12}\)
Vậy : \(\hept{\begin{cases}\frac{2x}{-6}=\frac{7}{12}\\\frac{3y}{18}=\frac{7}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}\)
=>(2x-1)^2=24^2
=>2x-1=24 hoặc 2x-1=-24
=>x=-23/2 hoặc x=25/2
với |2x+10|+|3x-1|+|1-x|=3 ta có 2 trường hợp:
trường hợp 1:|2x+10|+|3x-1|+|1-x|=2x+10+3x-1+1-x=3
4x+10=3
4x=-7
x=-7/4
trường hợp 2:|2x+10|+|3x-1|+|1-x|=-(2x+10)+[-(3x-1)]+[-(1-x)]=3
-2x-10-3x+1-1+x=3
-4x-10=3
-4x=13
x=-13/4
/ là dấu phần nhé!
Để | 2x + 3 | = x + 2 <=> 2x + 3 = ± ( x + 2 )
TH1 : 2x + 3 = x + 2
<=> 2x - x = 2 - 3
=> x = - 1 ( TM )
TH2 : 2x + 3 = - ( x + 2 )
<=> 2x + 3 = - x - 2
<=> 2x + x = - 2 - 3
=> 3x = - 5 ( loại )
Vậy x = - 1
<=>x|3+1-2-1|=2
x1 =2 hoặc x.(-1)=2
=>x=2 và x=-2