Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải tạm trong câu này chứ không thấy đề ở đâu hết. Với n dương
So sánh \(\frac{n}{n+3};\frac{n+1}{n+2}\)
Ta có: \(\frac{n}{n+3}< \frac{n}{n+2}\) (vì cùng tử nên mẫu bé hơn thì lớn hơn) (1)
Ta lại có: \(\frac{n}{n+2}< \frac{n+1}{n+2}\) (vì cùng mẫu nên tử lớn hơn thì lớn hơn) (2)
Từ (1) và (2) \(\Rightarrow\frac{n}{n+3}< \frac{n+1}{n+2}\)
Ta xét:
\(\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}=\dfrac{3}{1.2.3.4};\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}=\dfrac{3}{2.3.4.5};.....;\dfrac{1}{7.8.9}-\dfrac{1}{8.9.10}=\dfrac{3}{7.8.9.10}\)
Gọi biểu thức phải tính là A, ta có:
3A=\(\dfrac{1}{1.2.3}-\dfrac{1}{8.9.10}=\dfrac{714}{4320}\)
Vậy A=\(\dfrac{238}{1440}\)
Đặt biểu thức trong ngoặc là A
\(3A=\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+\frac{3}{3.4.5.6}+...+\frac{3}{7.8.9.10}.\)
\(3A=\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+\frac{6-3}{3.4.5.6}+...+\frac{10-7}{7.8.9.10}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+...+\frac{1}{7.8.9}-\frac{1}{8.9.10}\)
\(3A=\frac{1}{1.2.3}-\frac{1}{8.9.10}\Rightarrow A=\frac{1}{1.2.3.3}-\frac{1}{3.8.9.10}\)
Từ đó tính ra x . Bạn tự làm nốt nhé. Ngại tính
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100} \)
\(=\frac{1}{3}.\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)=\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)=\frac{1}{18}-\frac{1}{6.970200}\)
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{97.98.99.100}\)
=\(\frac{1}{3}\cdot\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{97.98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{4.5.6}+...+\frac{1}{97.98.99}-\frac{1}{98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{98.99.100}\right)\)
=\(\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{970200}\right)\)
=\(\frac{1}{18}-\frac{1}{5821200}\)
bạn ơi,cs thể viết rõ đề bài ra đc k