Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2x+1=25\)
\(\Leftrightarrow\)\(\left(x+1\right)^2=25\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=5\\x+1=-5\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=4\\x=-6\end{cases}}\)
Vậy...
\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Leftrightarrow\)\(3\left(x^2-2x+1\right)-\left(3x^2-15x\right)=1\)
\(\Leftrightarrow\)\(3x^2-6x+3-3x^2+15x=1\)
\(\Leftrightarrow\)\(9x=-2\)
\(\Leftrightarrow\)\(x=-\frac{2}{9}\)
Vậy....
\(x^2-2x+1=25\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=25\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=5\\x-1=-5\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy....
b) \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Leftrightarrow\)\(3x^2-6x+3-3x^2+15x=1\)
\(\Leftrightarrow\)\(9x=-2\)
\(\Leftrightarrow\)\(x=-\frac{2}{9}\)
Vậy...
\(\left(5-2x\right)^2-16=0\)
\(\Leftrightarrow\left(5-2x\right)^2-4^2=0\)
\(\Rightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-2x-4=0\\5-2x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x=4-5\\-2x=-4-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}-2x=-1\\-2x=-9\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{-2}=\frac{1}{2}\\x=\frac{-9}{-2}=\frac{9}{2}\end{cases}}\)
Vậy ................................
\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Rightarrow3x^2-3^2-3x^2+15x=1\)
\(\Rightarrow3x^2-9-3x^2+15x=1\)
\(\Rightarrow-9+15x=1\)
\(\Rightarrow15x=-8\)
\(\Rightarrow x=\frac{-8}{15}\)
b)x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12
<=> 3x^2 +2x +x^2+2x+1 - 4x^2 +25 +12=0
<=> 4x+38=0
=>4x= -38
=>x= -38/4= -19/2
\(D=x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy GTNN của D là \(\frac{3}{4}\)khi x = \(\frac{1}{2}\)
\(E=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{4}=\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)
Vậy GTNN của E là \(-\frac{9}{4}\)khi x = \(\frac{3}{2}\)
\(G=x^2+5y^2+2xy-2y+100\)
\(G=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+\frac{399}{4}\)
\(G=\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{399}{4}\ge\frac{399}{4}\)
Vậy GTNN của G là \(\frac{399}{4}\)khi x = \(-\frac{1}{4}\); y = \(\frac{1}{4}\)
a) 4(x - 3)2 - (2x - 1)(2x + 1) = 10
\(\Leftrightarrow\)4(x2 - 6x + 9) - (4x2 - 1) = 10
\(\Leftrightarrow\)4x2 - 24x + 36 - 4x2 + 1 - 10 = 0
\(\Leftrightarrow\)-24x + 27 = 0
\(\Leftrightarrow\)-24x = -27
\(\Leftrightarrow\)x = \(\frac{9}{8}\)
Vậy x = 9/8
b) (x - 4)2 - (x - 2)(x + 2) = 6
\(\Leftrightarrow\)x2 - 8x + 16 - x2 + 4 - 6 = 0
\(\Leftrightarrow\)-8x + 14 = 0
\(\Leftrightarrow\)-8x = -14
\(\Leftrightarrow\)x = \(\frac{7}{4}\)
Vậy x = 7/4
c) 9(x + 1)2 - (3x - 2)(3x + 2) = 10
\(\Leftrightarrow\)9(x2 + 2x + 1) - 9x2 + 4 - 10 = 0
\(\Leftrightarrow\)9x2 + 18x + 9 - 9x2 + 4 - 10 = 0
\(\Leftrightarrow\)18x + 3 = 0
\(\Leftrightarrow\)18x = - 3
\(\Leftrightarrow\)x = \(\frac{-1}{6}\)
Vậy x = -1/6
\(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=x+1-\left(x-9\right)\)
\(\Rightarrow6x^2+27x+4x+18-6x^2-x-12x-2=10\)
\(\Rightarrow18x+16=10\)
\(\Rightarrow18x=-6\)
\(\Rightarrow x=-\frac{6}{18}=-\frac{1}{3}\)
\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
\(\Leftrightarrow\)\(3x^2-6x+3-3x^2+15x=1\)
\(\Leftrightarrow\)\(9x=-2\)
\(\Leftrightarrow\)\(x=-\frac{2}{9}\)
Vậy...
\(x^2-2x+1=25\)
\(\Leftrightarrow\)\(x^2-2x-24=0\)
\(\Leftrightarrow\)\(\left(x+4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+4=0\\x-6=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-4\\x=6\end{cases}}\)
Vậy...