K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Vì a2,b2,c2 lớn hơn hoặc bằng 0 với mọi a,b,c => abc = 0.

30 tháng 5 2017

Tại sao a2,b2,c2 >= 0 với mọi a,b,c thì abc=0 vậy bạn?

\(a,\hept{\begin{cases}x+y=3\\x-2y=7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-y\\3-y-2y=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=3-y\\-3y=4\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3-\left(-\frac{4}{3}\right)\\y=-\frac{4}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{3}\\y=-\frac{4}{3}\end{cases}}}\)

\(b,\hept{\begin{cases}2x+y=5\\4x+2y=11\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+2y=10\left(1\right)\\4x+2y=11\left(2\right)\end{cases}}\)

Lấy ( 1 ) trừ ( 2 ) Ta được 0x + 0y = - 1 

=> hệ pt vô nghiệm 

\(c,\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=1\\x+\sqrt{3}y=\sqrt{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{2}.\left(\sqrt{2}-\sqrt{3}y\right)-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2-\sqrt{6}y-\sqrt{3}y=1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-\left(\sqrt{6}+\sqrt{3}\right)y=-1\\x=\sqrt{2}-\sqrt{3}y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\sqrt{3}.\frac{1}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=\sqrt{2}-\frac{\sqrt{3}}{\sqrt{6}+\sqrt{3}}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=\frac{1}{\sqrt{6}+\sqrt{3}}\\x=1\end{cases}}\)

11 tháng 7 2019

Ta có:

\(\hept{\begin{cases}|x+1|+|y+1|=5\left(1\right)\\|x+1|=4y-4\left(2\right)\end{cases}}\)

Thay (2) vào (1):

\(4y-4+|y-1|=5\left(3\right)\)

+Nếu \(y\ge-1\Rightarrow4y-4+y+1=5\Rightarrow5y=8\Rightarrow y=\frac{8}{5}\left(TM\right)\)

Thay y = 8/5 vào (2) ta có: 

\(|x+1|=4.\frac{8}{5}-4\)

\(\Leftrightarrow|x+1|=\frac{12}{5}\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{12}{5}\\x+1=\frac{-12}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{5}\\x=-\frac{17}{5}\end{cases}}\)

+Nếu \(y\le-1\Rightarrow4y-4-y-1=5\Rightarrow3y=10\Rightarrow y=\frac{10}{3}\left(L\right)\)

7 tháng 1 2018

a.\(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\2\cdot\frac{5}{8}+4y=3\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\)

<=>\(\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

7 tháng 1 2018

a) \(\hept{\begin{cases}3x-2y=1\\2x+4y=3\end{cases}}\Rightarrow\hept{\begin{cases}6x-4y=2\\2x+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}8x=5\\2x+4y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\\frac{5}{4}+4y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\4y=\frac{7}{4}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{8}\\y=\frac{7}{16}\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{5}{8};\frac{7}{16}\right)\)

b) \(\hept{\begin{cases}4x-3y=1\\-x+2y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}8x-6y=2\\-3x+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5x=5\\-3x+6y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\-3+6y=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)

cho mk hỏi ai chs lazi điểm danh cái đê ~ mk hỏi thật đấy k đùa nha ~ bình luận thì mk k cho 3 cái ~

c) Ta có: \(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x+1}+\dfrac{10}{y-2}=25\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{11}{y-2}=22\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-2=\dfrac{1}{2}\\\dfrac{1}{x+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\y-2=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\)

18 tháng 10 2020

a) \(\Leftrightarrow\hept{\begin{cases}\frac{x+1+1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}\Leftrightarrow\hept{\begin{cases}1+\frac{1}{x+1}+\frac{2}{y-2}=6\\\frac{5}{x+1}-\frac{1}{y-2}=3\end{cases}}}\)

Đặt \(a=\frac{1}{x+1};b=\frac{1}{y-2}\)

\(\Leftrightarrow\hept{\begin{cases}1+a+2b=6\\5a-b=3\end{cases}\Leftrightarrow\hept{\begin{cases}a+2b=5\\5a-b=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=1\\b=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+1}=1\\\frac{1}{y-2}=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=\frac{5}{2}\end{cases}}}\)

b) ĐK: \(\hept{\begin{cases}x\ne0\\y\ne1\end{cases}}\)

\(PT\left(1\right)\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\)(loại)

, x=2 , x2-2x+4=0 (3)

pt(3) vô nghiệm vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt(2) ta được \(\frac{1}{2}+\frac{1}{y-2}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow y=2\left(tm\text{đ}k\right)\)

Vậy nghiệm của hpt là: (x;y)=(2;2)