K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

Giải:

\(\overline{abcd},\overline{ab}\)\(\overline{ac}\) là các số nguyên tố

\(\Rightarrow b,c,d\) là các số lẻ khác \(5\)

Ta có:

\(b^2=\overline{cd}+b-c\Leftrightarrow b\left(b-1\right)=\overline{cd}-c\)

\(=10c+d-c=10c-c+d=9c+d\)

Do \(9c+d\ge10\) nên \(b\left(b-1\right)\ge10\)

\(\Rightarrow b\ge4\). Do đó \(\left[{}\begin{matrix}b=7\\b=9\end{matrix}\right.\)

Ta có các trường hợp sau:

\(*)\) Nếu \(b=7\) ta có:

\(9c+d=42⋮3\Rightarrow d⋮3\) \(\Rightarrow\left[{}\begin{matrix}d=3\\d=9\end{matrix}\right.\)

Với \(d=3\Rightarrow9c=39\Rightarrow\) Không tồn tại \(c\in N\)

Với \(d=9\Rightarrow9c+d⋮9\) còn \(42\) \(⋮̸\) \(9\) (loại)

\(*)\) Nếu \(b=9\) ta có:

\(9c+d=72⋮9\Rightarrow d⋮9\Rightarrow d=9\)

\(9c+9=72\Rightarrow9c=63\Rightarrow c=7\)

\(\overline{ab}=\overline{a9}\) là số nguyên tố \(\Rightarrow a\ne3;6;9;4\)

\(\overline{ac}=\overline{a7}\) là số nguyên tố \(\Rightarrow a\ne2;5;7;8\)

Mặt khác \(a\ne0\Rightarrow a=1\)

Vậy số cần tìm là \(1979\) (thỏa mãn số nguyên tố)

14 tháng 4 2017

giống hệt bài giải mẫu trên mạng

16 tháng 4 2019

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

30 tháng 1

Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)

từ (gt) db¯+c=b^2+ d (2)

=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9

+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)

+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7

Thay vào (2) ta đc c = 9

Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9 

=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn

7 tháng 2 2016

do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài

7 tháng 2 2016

moi hok lop 6 thoi

20 tháng 12 2021

HỎI GOOGLE Ý

3 tháng 2 2016

Vói mọi p ta có p^2 có 1 trong 2 dạng sau:

3k và 3k+1

Với p^2=3k, p là số nguyên tố=> p=3

Với p^2=3k+1=> p^2+14=3k+1+14=3k+15 chia hết cho 3

Mà 3k+15>3=> p^2+14 là hợp số ( vô lý)

Vậy p=3

7 tháng 4 2020

91,71 nha bạn

9 tháng 4 2020

thank bạn nguyễn tri tân nha

27 tháng 6 2017

bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7

7 tháng 11 2018

DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!