K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

ta có:

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0

do 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên 1!+2!+....+n! không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

17 tháng 12 2017

a,n=1 thì tm

n=2 thì ko tm

n=3 thì tm

n=4 thì ko tm

n >= 5 thì n! chia hết cho 2 và 5 => n! có tận cùng là 0

Mà 1!+2!+3!+4! = 33

=> 1!+2!+3!+4!+.....+n! có tận cùng là 3 nên ko chính phương

Vậy n thuộc {1;3}

k mk nha

16 tháng 4 2016

- nếu n = 1 thì Q=1(chọn)

- nếu n=2 thì Q=3(loai)

- nếu n=3 thì Q=9=32(chọn)

- nếu n =4 thì Q= 33(loại)

- nếu n lớn hơn hoặc bằng 5 thì Q=1!+2!+3!+4!+...+n!

                                                Q=33+5!+...+n!

các số kể từ 5! trở đi trong tích đều chứa cặp thừa số 2 và 5 nên mỗi giai thừa có chữ số tận cùng là 0 

 => 33+...0=...3

số chính phương không có tận cùng 3 nên Q không phải số chính phương 

=> a lớn hơn hoặc bằng 5 bị loại

vậy n = 1 hoặc 3