Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1)
= 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]
=2[1/2-1/(x+1)]= (x-1)/(x+1)
= 2001/2003
==> x=2002
1/3 + 1/6 + 1/10 + .......+2/x(x + 1) = 2015/2017
=> 2/2.3 +2/3.4 + 2/4.5 +........+ 2/x(x+1) =2015/2017
=> 2. [1/2.3 + 1/3.4 +1/4.5+....+1/x(x+1) ] = 2015/2017
=> 2. [ 1/2+ (-1/3 + 1/3) + (-1 /4 +1/4)+ -1/5 +.......+ 1/x + -1/x+1]
=> (1/2 + -1/x+1) .2 =2015/2017
=> 1/2 + -1/x+1 = 2015/2017 :2 = 2015/2017 . 1/2 =2015/4034.
=> -1/x+1 = 2015/4034 -1/2 = 2015/4034 -2017/4034 = -1/2017
=> -1/x+1 = -1/2017
=>x+1=2017
=> x= 2016
câu 1. tìm x nguyên để \(\frac{-35}{6}\)<x<\(\frac{-18}{5}\)
<=> -4,375<x<-3,6
mà x\(\in\)Z nên x={-4}
câu 2. A=\(\frac{2015}{2016}\)+\(\frac{2016}{2017}\)
B=\(\frac{2015+2016}{2016+2017}\)=\(\frac{2015}{2016+2017}\)+\(\frac{2016}{2016+2017}\)
Vì \(\frac{2015}{2016+2017}\)<\(\frac{2015}{2016}\); \(\frac{2016}{2016+2017}\)<\(\frac{2016}{2017}\)
Vậy B<A
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\cdot\left(x+1\right)}=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2013}{2015}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2013}{2015}:2\)
\(\Rightarrow-\frac{1}{x+1}=\frac{2013}{4030}-\frac{1}{2}\)
\(\Rightarrow-\frac{1}{x+1}=-\frac{1}{2015}\Rightarrow x+1=2015\Rightarrow x=2014\)