Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C2:
Theo đầu bài ,ta có:
18n + 3 chia hết cho 7.
Biến đổi: 18n + 3 = 18n + 3n - 3n + 3
= 21n - 3(n - 1) chia hết cho 7.
Vì 21n chia hết cho 7
=> 3(n - 1) chia hết cho 7
Vì 3 không chia hết cho 7
=> n - 1 chia hết cho 7
Đặt k là số lần n - 1 chia hết cho 7
=> ( n - 1 ) : 7 = k
n - 1 = 7k
n = 7k + 1
Nếu k = 0 => n = 1
Nếu k = 1 => n = 8
Nếu k = 2 => n = 15
............
18n + 3 chia hết cho 7
<=> 14n + 4n + 3 chia hết cho 7
Vì 14n chia hết cho 7 => 4n + 3 chia hết cho 7.
Vì 7 chia hết cho 7 => 4n + 3 - 7 chia hết cho 7.
<=> 4n - 4 chia hết cho 7
<=> 4.(n - 1) chia hết cho 7
Ta lại có ƯCLN(4 ; 7) = 1 nên n - 1 chia hết cho 7
=> n - 1 = 7k (k $\in$∈ N). Vậy n = 7k + 1
3n+8 chia het cho n+2
=>3.(n+2)+2 chia het cho n+2
vi 3(n+2) luon chia het cho n+2
nen 2 chia het cho n+2
=>n+2 thuoc Ư(2)={1;2}
=>n thuoc {-1;0}
ma n la so tu nhien nen n=0
3n+7 chia hết cho 6-n
=> 3n+7 chia hết cho -(n-6)
=> 3n+7 chia hết cho n-6
=> 3n-18+25 chia hết cho n-6
=> 3.(n-6) +25 chia hết cho n-6
=> 25 chia hết cho n-6
=> n-6 = -1;1;-5;5;-25;25
=> a= 5;7;1;11;-19;31
Vì a là số tự nhiên
=> a= 5;7;1;11;31