Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik sửa hộ cô Linh Chi lại dòng thứ 8 nha:
\(40+a+4+a+4+a=60\)
\(\Rightarrow3a=12\)
\(\Rightarrow a=4\)
\(\Rightarrow n=40+4=44\)
Các bạn bổ sung n=44 nữa nha!
rõ ràng rằng : \(n\ge S\left(n\right)\text{ với mọi số tự nhiên n}\)
nên ta có : \(2014=n+S\left(n\right)\le n+n=2n\text{ hay }n\ge\frac{2014}{2}=1007\)
mà \(n\le n+S\left(n\right)=2014\)thế nên chắc chắc rằng n là số tự nhiên có 4 chữ số, nằm trong đoạn từ 1007 đến 2014.
vì thế S(n) là tổng của 4 chữ số nên \(S\left(n\right)\le9\times4=36\Rightarrow n\ge2014-36=1978\)nên nằm trong đoạn từ 1978 đến 2014.
Gọi n có dạng \(\overline{abcd}\) dựa vào điều kiện ở trên thì a chỉ có thể bằng 1 hoặc 2
với \(a=1\Rightarrow b=9\Rightarrow\hept{\begin{cases}c\ge7\\\overline{abcd}+a+b+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\ge7\\11\times c+2\times d=104\end{cases}\Leftrightarrow\hept{\begin{cases}c=8\\d=8\end{cases}}}\)
Vậy ta thu được số \(1988\text{ thỏa mãn đề bài}\)
Với \(a=2\Rightarrow b=0\Rightarrow\hept{\begin{cases}c\le1\\\overline{20cd}+2+0+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\le1\\11\times c+2\times d=12\end{cases}\Leftrightarrow\hept{\begin{cases}c=0\\d=6\end{cases}}}\)
vậy ta thu được số \(2006\text{ cũng thỏa mãn đề bài}\)
\(-6.\left(2-x\right)=-18\)
\(-12+6x=-18\)
\(6x=-18+12\)
\(6x=-6\)
\(x=-1\)
Vậy \(x=-1\)
các bài khác bạn tự làm nha
Xét 3 số tự nhiên liên tiếp \(2005^n,2005^n+1,2005^n+2\) luôn có ít nhất 1 số chia hết cho 3
Mà:\(2005\equiv1\)(mod 3)
\(\Rightarrow2005^n\equiv1^n=1\)(mod 3)
\(\Rightarrow2005^n\) không chia hết cho 3
Nên trong 2 số \(2005^n+1,2005^n+2\) luôn có 1 số chia hết cho 3
\(\Rightarrow\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)
Xét \(n=2k\left(k\in N\right)\)Ta có :
\(\left(2005^n+1\right)\left(2005^n+2\right)=\left(2005^{2k}+1\right)\left(2005^{2k}+2\right)\)
\(=\left(2005^{2k}+1\right)\left(2005^{2k}-1+3\right)\)
Vì \(2005^{2k}-1⋮2004⋮3\) do đó \(\left(2005^n+1\right)\left(2005^n+2\right)⋮3\)
Xét \(n=2k+1\) thì \(2005^n+1=2005^{2k+1}+1⋮2007⋮3\)
Ta có ngay ĐPCM
Ta có: \(\dfrac{2}{\left(n-1\right)n\left(n+1\right)}=\dfrac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}\)
Đặt B = 10n + 10n-1 + ...+ 10 + 1
=> 10.B = 10n+1 + 10n + ...+ 102 + 10
=> 10B - B = 10n+1 -1
=> 9B = 10n+1 - 1
Ta có: 9A = 9B. (10n+1 + 5) + 9 = (10n+1 -1).(10n+1 + 5) + 9
9A = (10n+1)2 + 5.10n+1 - 10n+1 - 5 + 9 = (10n+1)2 + 4.10n+1 + 4
= (10n+1 + 2)2
=> A = \(\left(\frac{10^{n+1}+2}{3}\right)^2\)
Vì (10n+1 + 2 ) chia hết cho 3 nên \(\left(\frac{10^{n+1}+2}{3}\right)^2\) là số chính phương
=> A là số chính phương
Ta có công thức: an-1=(a-1)(an-1+an-2+...+a+1)
Từ đó suy ra:
A=\(\frac{10^{n+1}-1}{9}\left(10^{n+1}+5\right)+1\)
Đặt 10n+1=B => A=\(\frac{\left(B-1\right)}{9}\left(B+5\right)+1\)
=> A=\(\frac{\left(B-1\right)\left(B+5\right)+9}{9}\)
= \(\frac{B^2+4B+4}{9}\)
= \(\left(\frac{B+2}{3}\right)^2\)Hay \(\left(\frac{100...02_{\left\{n\right\}}}{3}\right)^2\)
= 333...342
Vậy A là số chính phương. (1)
Gỉa sử A=m3, m thuộc N
=> 333...34{n số 3} = m3
=> m3 chia hết cho 2
=> m chia hết cho 2
=> m3 chia hết cho 8 Hay (2.1666..67{n-1 số 6} )2 chia hết cho 8
=>4.1666..672{n-1 số 6} chia hết cho 8
=>1666..672 chia hết cho 2 (Vô Lý)
Vậy A ko thể là lập phương của 1 số tự nhiên. (2)
Từ (1) và (2) => ĐPCM
Dễ mak nhưng xét hơi nhiều TH thôi :*(