Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik sửa hộ cô Linh Chi lại dòng thứ 8 nha:
\(40+a+4+a+4+a=60\)
\(\Rightarrow3a=12\)
\(\Rightarrow a=4\)
\(\Rightarrow n=40+4=44\)
Các bạn bổ sung n=44 nữa nha!
rõ ràng rằng : \(n\ge S\left(n\right)\text{ với mọi số tự nhiên n}\)
nên ta có : \(2014=n+S\left(n\right)\le n+n=2n\text{ hay }n\ge\frac{2014}{2}=1007\)
mà \(n\le n+S\left(n\right)=2014\)thế nên chắc chắc rằng n là số tự nhiên có 4 chữ số, nằm trong đoạn từ 1007 đến 2014.
vì thế S(n) là tổng của 4 chữ số nên \(S\left(n\right)\le9\times4=36\Rightarrow n\ge2014-36=1978\)nên nằm trong đoạn từ 1978 đến 2014.
Gọi n có dạng \(\overline{abcd}\) dựa vào điều kiện ở trên thì a chỉ có thể bằng 1 hoặc 2
với \(a=1\Rightarrow b=9\Rightarrow\hept{\begin{cases}c\ge7\\\overline{abcd}+a+b+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\ge7\\11\times c+2\times d=104\end{cases}\Leftrightarrow\hept{\begin{cases}c=8\\d=8\end{cases}}}\)
Vậy ta thu được số \(1988\text{ thỏa mãn đề bài}\)
Với \(a=2\Rightarrow b=0\Rightarrow\hept{\begin{cases}c\le1\\\overline{20cd}+2+0+c+d=2014\end{cases}}\Leftrightarrow\hept{\begin{cases}c\le1\\11\times c+2\times d=12\end{cases}\Leftrightarrow\hept{\begin{cases}c=0\\d=6\end{cases}}}\)
vậy ta thu được số \(2006\text{ cũng thỏa mãn đề bài}\)
\(abc=\left(n^2-1\right)-\left(n-2\right)^2\)
\(\left(100a+10b+c\right)-\left(100c+10b+a\right)=\left(n^2-1\right)-\left(n^2-4n+4\right)\)
\(99a-99c=4n-5\)
\(99\left(a-c\right)=4n-5\)
Ta có : 99(a-c) chia hết cho 99 nên (4n-5) chia hết cho 99 (1)
* Mặt khác thì : \(abc=n^2-1\)
\(=>n^2=abc+1\)
=> 101 lớn hơn hoặc bằng \(n^2\) bé hơn 1000
=> 100 < 101 < \(n^2\) <1000<1024
=> \(10^2< n^2< 32^2\)
=> 10 < n < 32
=> 40 < 4n < 128
=> 35 < 4n-5< 123 (2)
Từ (1)(2) => 4n - 5 = 99
=> 4n = 104
=> n = 26
Vậy \(abc=n^2-1=26^2-1=675\)
người mang cho em tỗn thương , em vẫn yêu vẫn ko than vãn 1 lời
Ta thấy :
• n<3 chữ số:999+(9+9+9)<2016=> n>3 chữ số
• n>5 chữ số: 9999+(9+9+9+9)>2016
=> n có 4 chữ số
Khi n có 4 chữ số ta có \(2016-36\le n\le2016=>1980\le n\le2016\)
=> n có dạng 19ab và 20cd
• TH1: n=19ab
Ta có: 19ab +1+9+a+b=2016
=> 1900+1+9+11a+2b=2016
=> 1910+11a+2b=2016
=> 11a+2b=106
Vì 2b chẵn, 106 chẵn => 11a là số chẵn
=> a là số chẵn
Mà a < 10 và n >= 1980
=> 11a=88 => a=8 => b=9
Ta có số 1989
•TH2: n=20cd
Ta có 20cd +2+c+d=2016
=> 2002+11c+2d=2016
=> 11c+2d=14
Ta thấy 2d chẵn, 14 chẵn => 11c chẵn => c chẵn
Và 11c<14 => c=0 => d=7
Ta có số 2007
Vậy n=1989; n=2007