Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\frac{7}{n-1}\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
\(c,\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{2}{n-1}\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng
n-1 | 1 | -1 | 2 | -2 |
n | 2 | 0 | 3 | -1 |
Ta có 2n+7=2n+2+5=2(n+1)+5
Vì n+1 chia hết cho n+1 nên 2(n+1) chia hết cho n+1
=>5 chia hết cho n+1=>n+1 thuộc Ư(5)={1;5}
Với n+1=1 thì n=0
Với n+1=5 thì n=4
Vậy n={0;4}
Gọi d là ƯC ( n+1,2n+3)
Suy ra n+1 \(⋮\)d ; 2n +3 \(⋮\)d
n +1\(⋮\)d \(\Rightarrow\)2 (n+1)\(⋮\)d
\(\Rightarrow\)2n +2 \(⋮\)d
Do đó : (2n + 3) - (2n +2 )\(⋮\)d
2n+3 - 2n -2 \(⋮\)d
1\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư (1)={1}
\(\Rightarrow\)ƯC (n +1 , 2n +3 ) = {1}
\(\Rightarrow\)ƯCLN (n +1, 2n +3 ) =1
Bài sau tương tự nha bn.Chúc bn học tốt !!!
Gọi d là ƯC(n; 2n + 3)
\(\Rightarrow\hept{\begin{cases}n⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n⋮d\\2n+3⋮d\end{cases}}}\)
=> ( 2n + 3 ) - 2n chia hết cho d
=> 2n + 3 - 2n chia hết cho d
=> ( 2n - 2n ) + 3 chia hết cho d
=> 3 chia hết cho d
=> d thuộc Ư(3) = { 1 ; 3 }
Ta có : 2n + 3 chia hết cho 3
2n chia hết cho 3
mà (n,3) = 1 nên n chia hết cho 3
=> Khi n = 3k thì ( n, 2n + 3 ) = 3 ( k thuộc N )
=> Khi n \(\ne\)3k thì \(\frac{n}{2n+3}\)tối giản