K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

đặt mỗi biểu thức trên = một số mũ 2 là đc

15 tháng 1 2019

a) \(n^2+2n+12\) là số chính phương nên \(n^2+2n+12=m^2\ge0\)

Xét m = 0 thì \(n^2+2n+12=0\) (1)

Đặt \(\Delta=b^2-4ac=2^2-4.1.12< 0\)

Do \(\Delta< 0\) nên (1) vô nghiệm  (*)

Mặt khác n là số tự nhiên nên \(n^2+2n+12\) là số tự nhiên nên \(m\ge1\)

Xét \(n^2+2n+12\ge1\Leftrightarrow n^2+2n+11\ge0\) (2)

Đặt \(\Delta=b^2-4ac=2^2-4.1.11< 0\)

Do \(\Delta< 0\) nên (2) vô nghiệm (**)

Từ (*) và (**),ta dễ dàng suy ra không có số n nào thỏa mãn \(n^2+2n+12\) là số chính phương (không chắc)

2 tháng 11 2019

Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k thuộc N)

Suy ra (n2 + 2n + 1) + 11 = k2

Suy ra k2 – (n+1)2 = 11

Suy ra (k+n+1)(k-n-1) = 11

Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1

+ Với k+n+1 = 11 thì k = 6

Thay vào ta có : k – n - 1 = 1

6 - n - 1 =1 Suy ra n = 4

2 tháng 11 2019

Đặt \(n^2+2n+18=a^2\left(a\inℕ;n\inℕ\right)\)

\(\Leftrightarrow a^2-\left(n+1\right)^2=17\)

\(\Leftrightarrow\left(a+n+1\right)\left(a-n-1\right)=17\)

Vì \(a\inℕ;n\inℕ\) nên  \(\left(a+n+1\right)>\left(a-n-1\right)\); 17 là số nguyên tố

\(\Rightarrow a+n+1=17\)(*)

và a - n - 1 = 1 hay a = n + 2 

Thay a = n +2 vào (*)  tính được n = 7

2 tháng 11 2016

a) \(4n-5⋮2n-1\)

\(\Rightarrow\left(4n-2\right)-3⋮2n-1\)

\(\Rightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Rightarrow-3⋮2n-1\)

\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)

+) \(2n-1=1\Rightarrow2n=2\Rightarrow n=1\) ( chọn )

+) \(2x-1=-1\Rightarrow2n=0\Rightarrow n=0\) ( chọn )

+) \(2n-1=3\Rightarrow2n=4\Rightarrow n=2\) ( chọn )

+) \(2n-1=-3\Rightarrow n=-1\) ( loại )

Vậy \(n\in\left\{1;0;2\right\}\)

3 tháng 11 2016

Cho mk hỏi nha cái dấu \(⋮\) là j thế

29 tháng 9 2020

a) Có vô số số tự nhiên n thỏa mãn như

n = 1 => 1 + 3 = 4 là số chính phương

n = 6 => 6 + 3 = 9 là số chính phương

....

b) Ta có: \(n^2+2n+2\)

\(=\left(n^2+2n+1\right)+1\)

\(=\left(n+1\right)^2+1\)

Vì \(\left(n+1\right)^2\) là 1 SCP nên \(\left(n+1\right)^2+1\) là số chính phương liền kề ngay nó

Mà chỉ tồn tại bộ số 0 và 1 thỏa mãn nên ta xét:

\(\left(n+1\right)^2=0\Rightarrow n=-1\) , mà n là số tự nhiên

=> Không tồn tại n thỏa mãn

2 tháng 5 2018

sai rồi bạn ơi

14 tháng 9 2021

c)\(7^{2n}+7^{2n+2}=2450\)

\(7^{2n}+7^{2n}.7^2=2450\)

\(7^{2n}.50=2450\)

\(7^{2n}=49\)\(=7^2\)

⇒2n=2

⇒n=1

14 tháng 9 2021

a)\(\left(-\dfrac{1}{5}\right)^n=-\dfrac{1}{125}\)                   b)\(\left(-\dfrac{2}{11}\right)^m=\dfrac{4}{121}\)

\(\left(-\dfrac{1}{5}\right)^n=\left(-\dfrac{1}{5}\right)^3\)                    \(=\left(-\dfrac{2}{11}\right)^m=\left(-\dfrac{2}{11}\right)^2\)

⇒n=3                                          ⇒m=2

4 tháng 9 2023

chắc khó qué nên ko ai lm cho tớ hic😥

4 tháng 9 2023

Bạn ơi, mình nghĩ là bạn nên chia các bài ra từng CH khác nhau, như vậy các TV sẽ dễ giúp đỡ bạn hơn và chất lượng ctrl có thể tốt hơn bạn nhé.