Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+3+3+...+n=aaa
=> n(n-1):2=a.111
=>n(n-1)=a.222=a.3.2.37
=> n(n+1)=a.6.37vì n(n+1) là 2 số tự nhiên liên típ = > a.6 và 37 là 2 số tự nhiên liên tiếp và a.6 chia hết cho 6 =>a.6=36<=>a=6=> n=36
vậy..............
Câu a dễ ợt mà nó xưa lắm rùi
Gọi là số nhỏ nhất thỏa a chia 3 dư 1, chia 4 dư 2, chia 5 dư 3, chia 6 dư 4
Thế thì a + 2 chia hết cho 3, 4, 5 và 6
=> a + 2 là BC (3, 4, 5, 6)
BCNN (3, 4, 5, 6) = 60
=> a + 2 là B(60) = { 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, ...}
Trong các số trên chỉ có số 600 là thỏa
vì a + 2 = 600
=> a = 600 - 2 = 598 chia hết cho 13.
Vậy a = 598
Câu b cũng vậy
Ta có:
4n - 5
= 4n - 2 - 3
= 2(2n - 1) - 3
4n - 5⋮2n - 1
⇔2(2n - 1) - 3⋮2n - 1
2(2n - 1)⋮2n - 1
=>3⋮2n - 1
hay 2n - 1∈Ư(3)
Ư(3) = {1;-1;3;-3}
Với 2n - 1 = 1 ⇔ 2n = 1 + 1 = 2 ⇔ n = 2 : 2 = 1
Với 2n - 1 = -1 ⇔ 2n = -1 + 1 = 0 ⇔ n = 0 : 2 = 0
Với 2n - 1 = 3 ⇔ 2n = 3 + 1 = 4 ⇔ n = 4 : 2 = 2
Với 2n - 1 = -3 ⇔ 2n = -3 + 1 = -2 ⇔ n = -2 : 2 = -1
Vì n ∈ N nên n = {0;1;2}
Gọi số cần tìm là x
Theo đề bài ta có : x chia 3 dư 1 , x chia 4 dư 2 , x chia 5 dư 3 , x chia 6 dư 4 và chia hết cho 11
=> x + 2 chia hết cho 3, 4, 5, 6
=> x + 2 thuộc BC(3, 4, 5, 6)
BCNN(3, 4, 5, 6) = 22 . 3 . 5 = 60
BC(3,4,5,6) = B(60) = { 0 ; 60 ; 120 ; 180 ; ... 420 . 480 ; ... }
=> x + 2 ∈∈{ 0 ; 60 ; 120 ; 180 ; ... 420 . 480 ; ... }
=> x ∈∈{ -2 ; 58 ; 118 ; 178 ; ... ; 418 ; 478 ; ... }
x chia hết cho 11 => x ∈∈B(11) = { 0 ; 11 ; 22 ; ... ; 385 ; 396 ; 407 ; 418 ; ... }
Cả hai tập hợp xuất hiện số 418
=> x = 418
Vậy số cần tìm là 418
nghi ngờ copy mạng lắm,trùm copy bánh đậu xanh chịu thua
có copy thì viết tham khảo nhé
Số tự nhiên đó là \(n\)thì ta có: \(n+1\)chia hết cho cả \(2,3,4,5\).
suy ra \(n+1\in BC\left(2,3,4,5\right)\)
Có \(BCNN\left(2,3,4,5\right)=60\)suy ra \(n+1\in B\left(60\right)\).
- \(n+1=60\)\(\Leftrightarrow n=59⋮̸7\).
- \(n+1=120\Leftrightarrow n=119⋮7\).
Vậy giá trị nhỏ nhất của \(n\)là \(119\).
gọi số tự nhiên đó là a
theo đề ra, ta có:
a chia 3 dư 1=>(a-1) chia hết cho3=>(a+2) chia hết cho 3
a chia 4 dư 2=>(a-2) chia hết cho4=>(a+2) chia hết cho 4
a chia 5 dư 3=>(a-3) chia hết cho5=>(a+2) chia hết cho 5
a chia 6 dư 4=>(a-4) chia hết cho6=>(a+2) chia hết cho 6
=>(a+2) thuộc BC(3;4;5;6)
BCNN(3;4;5;6)=60
BC(3;4;5;6)=B(60)={0;60;120;180;240;300;360;420;...}
=>(a+2)={0;60;120;180;240;300;360;420;...}
=>a={-2;58;118;178;238;298;358;418;...}
vì a là số tự nhiên nhỏ nhất và a chia hết cho 11
=>a chỉ có thể là 418
NHỚ CHO MÌNH 1 ĐÚNG NHA
Nhận xét:
3 - 1 = 2
4 - 2 = 2
5 - 3 = 2
6 - 4 = 2
Gọi số cần tìm là a
thì a + 2 chia hết cho cả 3,4,5,6
Ta có 3 = 3 x 1
4 = 2 x 2
3 = 5 x 1
6 = 3 x 2
3 x 2 x 2 x 5 = 60
a + 2 là bội của 60
a = (60 - 2 ) + k x 60
a= 58 + k x 60
a chia hết cho 11 mà 58: 11 = 5 (dư 3); 11 - 3 = 8
Vậy (k x 60) : 11 ( dư 8)
Dùng phép thử chọn để tìm k ta được k = 6
Vậy a = 58 + 6 x 60 = 418
Theo đề, ta có:
n chia 2 dư 1\(\Rightarrow n+1⋮2\Rightarrow n+3⋮2\)
n chia 5 dư 2 \(\Rightarrow n+3⋮5\)
\(n⋮3\Rightarrow n+3⋮3\)
\(\Rightarrow n+3\in BCNN\left(2;3;5\right)=30\)
\(\Rightarrow n+3=30\Rightarrow n=27\)
Vậy số tự nhiên n nhỏ nhất cần tìm là: 27
~ Học tốt! ~