Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab ( có gạch ngang trên đầu)
Theo bài ra ta có: a - b =5 (1)
nếu viết xen chữ số 0 vào giữa số hàng chục và hàng đơn vị thì số mới là: a0b ( có gạch ngang trên đầu)
=> a0b - ab = 630
=> 100a + 0 + b - 10a - b = 630
=> 90a = 630
=> a = 7
Thay a = 7 vào (1) ta đc b=2
Vậy số cần tìm là 72
học tốt
Gọi số cần tìm là ab, ta có:
ab + 630 = a0b
a x 10 + b + 630 = a x 100 + b
b + 630 - b = a x 100 - a x 10
630 = a x 90 \(\Rightarrow a=7\)
\(\Rightarrow b=7-5=2\)
Vậy số cần tìm là 72.
gọi số cần tìm là \(\overline{ab}\) theo đề bài
\(\overline{a1b}-\overline{ab}=370\Rightarrow100.a+10+b-10.a-b=370\)
\(\Rightarrow90.a=360\Rightarrow a=4\)
Mà theo đề bài \(a=\frac{2.b}{3}\Rightarrow b=\frac{3a}{2}=\frac{3.4}{2}=6\)
Số cần tìm là 46
Gọi x là chữ số hàng chục \(\left(x\in N,0< x\le9\right)\)
Gọi y là chữ số hàng đơn vị \(\left(y\in N,0\le y\le9\right)\)
Số ban đầu là: \(\overline{xy}=10x+y\)
Số lúc sau: \(\overline{xyx}=100x+10y+x=101x+10y\)
Do chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 nên: x - y = 2
Do số mới lớn hơn số ban đầu 682 nên: \(101x+10y-10x-y=682\)
\(\Leftrightarrow91x+9y=682\)
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=2\\91x+9y=682\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}91x-91y=182\\91x+9y=682\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-100y=-500\\x-y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)
Vậy số cần tìm là 75
Gọi chữ số hàng chục của số cần tìm là a, chữ số hàng đơn vị của số cần tìm là b (a thuộc N*, b thuộc n)
Khi đó, số cần tìm có dạng: 10a+b
Nếu viết thêm chữ số hạng chục vào bên phải số cần tìm thì khi đó số mới có dạng: 100a+ 10b+a=101a+10b
Mà số mới này hơn số đã cho 682 đơn vị
=>101a+10b-10a-b=682
<=>91a+9b=682 (1)
Theo đề ta có: a-b=2 <=>b=a-2(2)
Thay (2) vào (1) ta được:
91a+9 (a-2)=682
<=>100a=700
<=>a=7(thỏa điều kiện)
=> b=a-2=7-2=5 (thỏa điều kiện)
Vậy,số đã cho là 75
Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))
Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)
Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)
\(\Leftrightarrow10b+a-10a-b=36\)
\(\Leftrightarrow-9a+9b=36\)
\(\Leftrightarrow a-b=-4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số cần tìm là 59
gọi số có hai chữ số đó là \(\overline{ab}\) ta có
\(\hept{\begin{cases}a-b=2\\\overline{a0b}-\overline{ab}=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=2\\100a+b-10a-b=630\end{cases}\Leftrightarrow}\hept{\begin{cases}a=7\\b=5\end{cases}}}\)
Vậy số đó là\(75\)