Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của LÊ TRUNG HIẾU - Toán lớp 6 - Học toán với OnlineMath
1, S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Vì 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương
2,Ta có 10 ≤ n ≤ 99 nên 21 ≤ 2n+1 ≤ 199. Tìm số chính phương lẻ trong khoảng trên
ta được 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84.
Số 3n+1 bằng 37; 73; 121; 181; 253.Chỉ có 121 là số chính phương.
Vậy n = 40
1) S=abc+bca+cab=
=(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn
Vậy abc + bca + cab không phải là số chính phương
2) Xin lỗi mình chỉ biết làm câu 1 thôi
Chứng minh rằng tổng sau không là số chính phương
A = abc + bca + cab
abc và bca và cab là số tự nhiên
A = abc + bca + cab
=> A =( 100a + 10b + c)+ ( 100b + 10c + a)+( 100c + 10a+b )
=>A = 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
=> A = 111a + 111b + 111c
=> A= 111( a+b+c )= 37 . 3( a+b + c)
giả sử A là số chính phương thì A phải chứa thừa số nguyên tố 37 với số mũ chẵn nên
3(a+b+c) chia hết 37
=> a+b+c chia hết cho 37
Điều này không xảy ra vì 1 \(\le\) a + b + c \(\le\) 27
A = abc + bca + cab không phải là số chính phương
Bạn có thể thể tham khảo ở đây nè :
https://olm.vn/hoi-dap/detail/6393397984.html?pos=4552065025
Bài 1
Ta có: \(a.b=2018^{2018}\)
\(2018\equiv2\left(md3\right)\)
\(2018^{2018}\equiv2^{2018}\left(md3\right)\)
\(2018\equiv\left(2^2\right)^{1009}=4^{1009}\)
Mà \(4\equiv1\left(md3\right)\Rightarrow4^{1009}\equiv1\left(md3\right)\)
\(\Rightarrow a.b=2018^{2018}\equiv1\left(md3\right)\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}a\equiv1\left(md3\right)\\b\equiv1\left(md3\right)\end{cases}}\\\hept{\begin{cases}a\equiv2\left(md3\right)\\b\equiv2\left(md3\right)\end{cases}}\end{cases}}\)
Khi đó:\(\orbr{\begin{cases}a+b\equiv2\left(md3\right)\\a+b\equiv1\left(md3\right)\end{cases}}\)
\(\Rightarrow a+b\)ko chia hết cho 3\(\Rightarrow a+b\)ko chia hết cho 2019
Vậy \(a+b\)ko chia hết cho 2019
Xin lỗi bạn nha ,máy mình bị liệt 1 s chữ , md là mod nha ! Hk t !
Ta có:abc+bca+cab=p
\(\Rightarrow p=100a+10b+c+100b+10c+a+100c+10a+b\)
\(\Rightarrow p=111a+111b+111c\)
\(\Rightarrow111.\left(a+b+c\right)=p\)
\(\Rightarrow p=3.\left(a+b+c\right).37\)
Vì \(p⋮37\)\(\Rightarrow\)Để p là SCP
\(\Rightarrow p⋮37^2\)
\(\Rightarrow3.\left(a+b+c\right)=37\)
\(\Rightarrow\left(a+b+c\right)=\frac{37}{3}\)
\(\Rightarrow\)Không tồn tai số tự nhiên có 3 chữ số \(\)abc