Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai vì
ba=(ab-13)/3
ba là số nguyên => (ab-13) chia hết cho 3 => ba chia hết cho 3 => (a+b) chia hết cho 3 => ab cũng chia hết cho 3
=> để ba là số nguyên, ta có ab chia hết cho 3 nên 13 cũng chia hết cho 3 => vô lý
a/ \(\overline{ab}\ge10\Rightarrow\overline{ab}.45\ge10x45=450>\overline{ba}\)
=> Không có số nào thoả mãn đề bài
b/ \(\overline{ab}.6=\overline{1ab}\Rightarrow60.a+6.b=100+10.a+b\)
\(\Rightarrow50.a=100-5.b\Rightarrow10.a=20-b\)
Ta có \(10.a⋮10\Rightarrow20-b⋮10\Rightarrow b=0\Rightarrow a=2\)
Số cần tìm là \(\overline{ab}=20\) thử 20.6=120
Điều kiện 0 < a,b \(\le\) 9.
Ta có :
ab = 3 . ba + 13
\(\Leftrightarrow\) 10a + b = 3 . (10b + a) + 13
\(\Leftrightarrow\) 10a + b = 30b + 3a + 13
Cùng bớt 3a + b của cả 2 vế trng đẳng thức được :
7a = 29b + 13
Vì 7a chia hết cho 7 nên 29b + 13 \(\in\) B(7). (1)
Do 1 \(\le\) a \(\le\) 9 nên 7 \(\le\) 7a \(\le\) 63 \(\Rightarrow\) 7 \(\le\) 29b + 13 \(\le\) 63 \(\Leftrightarrow\) - 6 \(\le\) 29b \(\le\) 50 (2)
Từ (1) và (2) và vì b là chữ số khác 0 nên b = 1.
Khi đó 7a = 29 . 1 + 13 = 42 \(\Rightarrow\) a = 42 : 7 = 6.
Vậy số cần tìm là 61
ab = 3 x ba + 13
=> 10a + b = 3 ( 10b + a ) + 13
=> 10a +b = 30 b +3a + 13
=> 7a = 29b + 13
=> 7a -13 = 29b
a là số có 1 chữ số => a lớn nhất là 9 => 7a lớn nhất là 63 => 7a -13 lớn nhất là 50 mà 7a - 13 = 29b
=> b = 1 ( TM) ; b = 2 => 29 .2 = 58 > 50 ( loại ) ; b = 2 loại => b > 2 (loại)
b = 1 => 7a - 13 = 29 .1 => 7a = 29 + 13 => 7a = 42 => a = 6
Vậy số ab là 61
Ta có :
\(\overline{ab}-\overline{ba}=72\)
\(\Rightarrow10a+b-10b-a=72\)
\(\Rightarrow a\left(a-b\right)=8\)
Mà \(0< a;b\le9\)
=> \(\begin{cases}a=9\\b=1\end{cases}\)
Vậy số cần tìm là 91
Ta có:
\(\overline{ab}-\overline{ba}=72\)
\(\Rightarrow\left(10a+b\right)-\left(10b+a\right)=72\)
\(\Rightarrow9a-9b=72\)
\(\Rightarrow9\left(a-b\right)=72\)
\(\Rightarrow a-b=72\div9\)
\(\Rightarrow a-b=8\)
Mà a > b => a = 9; b = 1
Vậy ab = 91
ab + ba = 66
10a + b + 10b + a = 66
11a + 11b = 66
11 ( a + b ) = 66
a + b = 6 = 1 + 5 = 5 + 1 = 2 + 4 = 4 + 2 = 3 + 3
Vậy ab = { 15; 51; 24; 42; 33 }