Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(b=\frac{31+9a}{8}\) thê vô cái còn lại được
\(\frac{11}{7}< \frac{a}{\frac{31+9a}{8}}< \frac{23}{29}\)
\(\Leftrightarrow\frac{11}{7}< \frac{8a}{31+9a}< \frac{23}{29}\)
\(\Leftrightarrow\hept{\begin{cases}56a>341+99a\\232a< 713+207a\end{cases}}\)
\(\Leftrightarrow28< a< -7\)
Không tồn tại a,b tự nhiên thỏa bài toán
tớ xin lỗi đề là 11\(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)
Ta có : \(xy+4x=35+5y\)
\(\Rightarrow\)\(x\left(y+4\right)-5y=35\)
\(\Rightarrow\)\(x\left(y+4\right)-5\left(y+4\right)=15\)
\(\Rightarrow\)\(\left(x-5\right)\left(y+4\right)=15\)
=> x - 5; y + 4 là ước của 15 và x,y là số tự nhiên
Ta có bảng :
x-5 | 1 | 3 | 5 | 15 |
y+4 | 15 | 5 | 3 | 1 |
x | 6 | 8 | 10 | 20 |
y | 11 | 1 | -1 | -3 |
Do x,y là số tự nhiên nên x = 6; y = 11 hoặc x = 8; y = 1
Vậy .....
Stusy well !
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(b+c+d\right)+\left(a+c+d\right)+\left(d+a+b\right)+\left(a+b+c\right)}{a+b+c}=\frac{3a+3b+3a+3d}{a+b+c}=\frac{3\left(a+b+c+d\right)}{a+b+c+d}=3\)
Vậy \(k=3\)
Ta có:\(3^a=9^{b-1}=3^{2b-2}\Rightarrow a=2b-2\)
\(2^{a+8}=8^b=2^{3b}\Rightarrow a+8=3b\Rightarrow a=3b-8\)
\(\Rightarrow\left(3b-8\right)-\left(2b-2\right)=b-6=0\Rightarrow b=6\)
\(\Rightarrow a=2b-2=2.6-2=10\)
Giải:
Theo đề bài ta có:
\(8b-9a=31\Rightarrow b=\dfrac{31+9a}{8}\)
\(=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\) \(\in N\)
\(\Rightarrow\dfrac{a-1}{8}\in N\Leftrightarrow\left(a-1\right)⋮8\Rightarrow a=8k+1\left(k\in N\right)\)
Khi đó: \(b=\dfrac{31+9\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Rightarrow11\left(9k+5\right)< 17\left(8k+1\right)\Rightarrow37k>38\) \(\Rightarrow k>1\left(1\right)\)
Và \(29\left(8k+1\right)< 23\left(9k+5\right)\Rightarrow25k< 86\) \(\Rightarrow k< 4\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow1< k< 4\Leftrightarrow k\in\left\{2;3\right\}\)
Ta xét 2 trường hợp:
Trường hợp 1: Nếu \(k=2\)
\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.2+1\\b=9.2+5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\)
Trường hợp 2: Nếu \(k=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.3+1\\b=9.3+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\)
Vậy \(\left(a,b\right)=\left(17;23\right);\left(25;32\right)\)