K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

Ta có : \(xy+4x=35+5y\)

\(\Rightarrow\)\(x\left(y+4\right)-5y=35\)

\(\Rightarrow\)\(x\left(y+4\right)-5\left(y+4\right)=15\)

\(\Rightarrow\)\(\left(x-5\right)\left(y+4\right)=15\)

=> x - 5; y + 4 là ước của 15 và x,y là số tự nhiên

Ta có bảng :

x-513515
y+415531
x681020
y111-1-3

Do x,y là số tự nhiên nên x = 6; y = 11 hoặc x = 8; y = 1

Vậy .....

Stusy well !

 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z. 
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 
=> xy thuộc {1 ; 2 ; 3}. 
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí. 
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3. 
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2. 
Vậy nghiệm nguyên dương của phương trình (2) là các hoán vị của (1 ; 2 ; 3).

tích nha

2 tháng 4 2016

mk giải đc bài này ở dạng lớp 7..nè 

Mà x+y=a+b⇒x−a=b−y

+Nếu x−a=b−y=0⇔x=a; y=b thì (1) thành 0=0 (thỏa mãn)

+Nếu x−a=b−y≠0 thì (1)⇔x+a=b+y⇔x−y=b−a

Lại có: x+y=a+b

Cộng 2 pt theo vế, ta được: 2x=2b⇒x=b

Trừ 2 pt theo vế ta được: 2y=2a⇒y=a

Vậy: x=a; y=b hoặc x=b; y=a

Suy ra xn+yn=an+bvới \(\forall x\)

6 tháng 1 2019

pt là gì vậy bạn ?

21 tháng 10 2017

\(xy-x-y=2\)

\(\Rightarrow xy-x-y+1=3\)

\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=3\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)

Tự xét được chứ :">

21 tháng 10 2017

thanks

23 tháng 4 2017

Giải:

Theo đề bài ta có:

\(8b-9a=31\Rightarrow b=\dfrac{31+9a}{8}\)

\(=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\) \(\in N\)

\(\Rightarrow\dfrac{a-1}{8}\in N\Leftrightarrow\left(a-1\right)⋮8\Rightarrow a=8k+1\left(k\in N\right)\)

Khi đó: \(b=\dfrac{31+9\left(8k+1\right)}{8}=9k+5\)

\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)

\(\Rightarrow11\left(9k+5\right)< 17\left(8k+1\right)\Rightarrow37k>38\) \(\Rightarrow k>1\left(1\right)\)

\(29\left(8k+1\right)< 23\left(9k+5\right)\Rightarrow25k< 86\) \(\Rightarrow k< 4\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow1< k< 4\Leftrightarrow k\in\left\{2;3\right\}\)

Ta xét 2 trường hợp:

Trường hợp 1: Nếu \(k=2\)

\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.2+1\\b=9.2+5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\)

Trường hợp 2: Nếu \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}a=8k+1\\b=9k+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=8.3+1\\b=9.3+5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\)

Vậy \(\left(a,b\right)=\left(17;23\right);\left(25;32\right)\)