K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 11 2023

Lời giải:

Vì $a$ chia $6$ dư $5$ nên đặt $a=6k+5$ với $k$ nguyên. 

Khi đó: $a^2=(6k+5)^2=36k^2+25+60k=6(6k^2+10k+4)+1$ chia $6$ dư $1$

19 tháng 11 2023

Ta có a: 6 dư 5
=> a= 6k+5 với k ϵ N
có: a2 = (6k+5)2 = 36k2+ 60k+25
vì 36k2⋮6 ; 60k⋮6 ; 25 : 6 dư 1
=> a2 chia 6 dư 1 
 

15 tháng 10 2023

a, Gọi b là số thương của phép chia a cho 3 dư 2 => a=3b+2

\(a^2=\left(3b+2\right)^2=9b^2+12b+4=3\left(3b^2+4b+1\right)+1\\ Mà:3\left(3b^2+4b+1\right)⋮3\\ Vậy:3\left(b^2+4b+1\right)+1:3\left(dư.1\right)\\ Vậy:a^2:3\left(dư.1\right)\left(đpcm\right)\)

b, Gọi c là số thương của phép chia cho 5 dư 3 => a=5b+3

\(a^2=\left(5b+3\right)^2=25b^2+30b+9=5\left(5b^2+6b+1\right)+4\\ Mà:5\left(5b^2+6b+1\right)⋮5\\ Nên:5\left(5b^2+6b+1\right)+4:5\left(dư.4\right)\\ Vậy:a^2:5\left(dư.4\right)\left(đpcm\right)\)

 

15 tháng 10 2023

a) Số a có dạng: \(a=3k+2\) 

\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k\right)^2+2\cdot3k\cdot2+2^2=9k^2+12k+4\)

\(\Rightarrow a^2=9k^2+12k+3+1=3\left(3k^2+4k+1\right)+1\)

Mà: \(3\left(3k^2+4k+1\right)\) ⋮ 3 

\(\Rightarrow a^2=3\left(3k^2+4k+1\right)+1\) chia 3 dư 1

b) Số a có dạng là: \(a=5k+3\) 

\(\Rightarrow a^2=\left(5k+3\right)^2=25k^2+2\cdot5k\cdot3+3^2=25k^2+30k+9\)

\(\Rightarrow a^2=\left(25k^2+30k+5\right)+4=5\left(5k^2+6k+1\right)+4\)

Mà: \(5\left(5k^2+6k+1\right)\) ⋮ 5

\(\Rightarrow a^2=5\left(5k^2+6k+1\right)+4\) chia 5 dư 4 

12 tháng 7 2019

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

12 tháng 11 2017

2519 là đúng

9 tháng 10 2021

Freefire

22 tháng 2 2018

Ta có : x chia cho 2 dư 1

           x chia cho 3 dư 2 

           x chia cho 4 dư 3 

           x chia cho 5 dư 4 \(\Rightarrow\)x+1 chia hết cho 2;3;4;5;6;7;8;9\(\Rightarrow\)x +1 = BCNN(2;3;4;5;6;7;8;9) = 2520 \(\Rightarrow\)x=2519(nếu x nhỏ nhất)

           x chia cho 6 dư 5 

           x chia cho 7 dư 6

           x chia cho 8 dư 7

           x chia cho 9 dư 8

Còn nếu x không nhỏ nhất thì nhân lần lượt với các số tự nhiên từ 0;1;2;3...

23 tháng 9 2020

Gọi x là số cần tìm 

x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 ... chia 9 dư 8 

\(\Rightarrow x+1⋮2;3;4;5;6;7;8;9\)  

x có dạng \(x+kBCNN\left(2;3;4;5;6;7;8;9\right);k\in N\)

\(2=2\) 

\(3=3\)

\(4=2^2\) 

\(5=5\) 

\(6=2\cdot3\) 

\(7=7\) 

\(8=2^3\) 

\(9=3^2\) 

\(BCNN\left(2;3;4;5;6;7;8;9\right)=2^3\cdot3^2\cdot5\cdot7=2520\) 

\(x+1=2520\) 

\(x=2519\) 

Vậy \(x=\left\{2519;2519+1\cdot2520;2519+2\cdot2520;...\right\}\) 

\(x=\left\{2519;5039;7559;...\right\}\)

12 tháng 11 2017

Câu hỏi của Cao Thành Long - Toán lớp 5 - Học toán với OnlineMath

vô link nè nha Nguyễn Đình Toàn

31 tháng 8 2019

a.Ta có a /4 dư 2 là 6

           b/4 dư 1 là 5

Vậy a*b=6*5=30 chia 4 dư 2

b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1

c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1

31 tháng 8 2019

a) Vì a chia 4 dư 2 nên a = 4k + 2 

        b chia 4 dư 1 nên b = 4t + 1 

a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2  chia 4 dư 2

Vậy ab chia 4 dư 2

b) Vì a là số lẻ nên a = 2k + 1

a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1

Vậy a² chia 4 dư 1 

c) Vì a² là số chính phương ( a là số tự nhiên )

suy ra a² chia 4 dư 0 hoặc 1