Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+x=x(x+1)x2+x=x(x+1)
x(x+1)x(x+1)dương ⇔⇔x>0x>0 Hoặc x0x0 x+10x+10 Hoặc x−1x−1 x0x0 hoặc \(x
Vì các số 3 ; x ; y ; 6 ; 1 đều là các số nguyên
Nên x; y thuộc mọi giá trị nguyên thì H vẫn là số nguyên
Ta có: x2>=0(với mọi x)
=>x2+2>0(với mọi x)
Vậy với mọi xEZ thì x2+2 luôn dương
a) x khác 2
b) với x<2
c) \(A=\frac{x\left(x-2\right)+2\left(x-2\right)+7}{x-2}=x+2+\frac{7}{x-2}\)
x-2=(-7,-1,1,7)
x=(-5,1,3,9)
a) đk kiện xác định là mẫu khác 0
=> x-2 khác o=> x khác 2
b)
tử số luôn dương mọi x
vậy để A âm thì mẫu số phải (-)
=> x-2<0=> x<2
c)thêm bớt sao cho tử là các số hạng chia hết cho mẫu
cụ thể
x^2-2x+2x-4+4+3
ghép
x(x-2)+2(x-2)+7
như vậy chỉ còn mỗi số 7 không chia hết cho x-2
vậy x-2 là ước của 7=(+-1,+-7) ok
Để \(x\inℤ\)khi \(\frac{3x+12}{2x+4}\)là số nguyên
hay \(3x+12⋮2x+4\Leftrightarrow6x+24⋮2x+4\)
\(\Leftrightarrow3\left(2x+4\right)+12⋮2x+4\Rightarrow2n+4\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
2n + 4 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | -3/2 ( ktm ) | -5/2 ( ktm ) | -1 | -3 | -1/2 ( ktm ) | -7/2 ( ktm ) | 0 | -4 | 1 | -5 | 4 | -8 |
ĐKXĐ : \(x\ne2\)
Ta có HĐT sau (a - b)(a + b) = a2 - ab + ab - b2 = a2 - b2
Áp dụng vào bài toán ta có:
x4 + 3 = (x4 - 16) + 19
= [(x2)2 - 42] + 19
= (x2 - 4)(x2 + 4) + 19
= (x - 2)(x + 2)(x2 + 4) + 19
Từ đó \(A=\dfrac{x^2+3}{x-2}=\dfrac{\left(x-2\right).\left(x+2\right).\left(x^2+4\right)+19}{x-2}\)
\(=\left(x+2\right).\left(x^2+4\right)+\dfrac{19}{x-2}\)
Do \(x\inℤ\) nên \(A\inℤ\Leftrightarrow19⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(19\right)=\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{3;1;21;-17\right\}\)
a: Khi x=1 thì \(A=\dfrac{x-8}{x-3}=\dfrac{1-8}{1-3}=\dfrac{-7}{-2}=\dfrac{7}{2}\)
Khi x=2/11 thì \(A=\dfrac{\dfrac{2}{11}-8}{\dfrac{2}{11}-3}=\dfrac{-86}{11}:\dfrac{-31}{11}=\dfrac{86}{31}\)
b: Để A là số nguyên thì \(x-8⋮x-3\)
\(\Leftrightarrow x-3-5⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{4;2;8;-2\right\}\)
a)
1, \(A=\frac{4x-7}{x-2}=\frac{4x-8+1}{x-2}=\frac{2\left(x-2\right)+1}{x-2}=2+\frac{1}{x-2}\)
A nguyên <=> \(\frac{1}{x-2}\) nguyên <=> \(1⋮x-2\)
<=>\(x-2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow x\in\left\{1;3\right\}\)
2,\(B=\frac{3x^2-9x+2}{x-3}=\frac{3x\left(x-3\right)+2}{x-3}=3x+\frac{2}{x-3}\)
B nguyên <=> \(\frac{2}{x-3}\) nguyên <=> \(2⋮x-3\)
<=>\(x-3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\Leftrightarrow x\in\left\{1;2;4;5\right\}\)
Vậy .............
b)Kết hợp các giá trị của x ở phần a ta thấy cả 2 biểu thức A và B nguyên khi x=1
\(P=\dfrac{x^2-3x-11}{x-2}=\dfrac{x\left(x-2\right)-\left(x-2\right)-13}{x-2}=x-1-\dfrac{13}{x-2}\)
Do \(x\) nguyên, để \(P\) nguyên thì \(x-2\inƯ\left(13\right)=\left\{1;-1;13;-13\right\}\)
Khi \(x-2=1\) ta được \(x=3\)
Khi \(x-2=-1\) ta được \(x=1\)
Khi \(x-2=13\) ta được \(x=15\)
Khi \(x-2=-13\) ta được \(x=-11\)
Vậy các giá trị thỏa mãn là \(x\in\left\{3;1;15;-11\right\}\)