Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2
Ta có:
\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)
Trường hợp 1: \(x-102>0\Rightarrow x>102\)
\(2-x>0\Rightarrow x< 2\)
\(\Rightarrow102< x< 2\left(loại\right)\)
Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)
\(2-x< 0\Rightarrow x>2\)
\(\Rightarrow2< x< 102\left(nhận\right)\)
Vậy GTNN của A là -100 đạt được khi 2<x<102.
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2
\(D=\dfrac{-x+12+8}{x-12}=-1+\dfrac{8}{x-12}\)
Để D nhỏ nhất thì x-12=-1
=>x=11
\(C=\dfrac{3x-40}{x-13}=\dfrac{3x-39-1}{x-13}=3-\dfrac{1}{x-13}\)
Để C lớn nhât thì 1/x-13 nhỏ nhất
=>x-13=-1
=>x=12
a) Đặt A= x-3/x-5 (đk x khác -5)
<=>A=( x-5)+2/x-5
<=>A= 1+2/x-5
Để A=1+2/x-5 là số nguyên thì 2/x+5 phải là số nguyên
<=> 2 chia hết x-5 hay x-5€ Ư(2)
<=> x-5€ {-2,-1,1,2}
<=> x€ {3,4,6,7}
Mà x€ Z, x khác -5
=> x€{3,4,6,7}
Vậy với x€{3,4,6,7} thì A=x-3/x-5 là số nguyên
b) Đặt B=3x-2/x+3(đk x khác -3) <=> B=3(x+3)-11/x+3
<=> B=3-11/x+3
Để B=3-11/x+3 là số nguyên thì 11/x+3 phải là số nguyên
<=> 11 chia hết cho x+3
<=>x+3€ Ư(11)
<=> x+3€{-11,-1,1,11}
<=> x€{-14,-4,-2,8}
Mà x€Z, x khác -3=> x€{-14,-4,-2,8}
Vậy với x€{-14,-4,-2,8} thì B=3x-2/x+3 là số nguyên
A= 3x2 - 2x + 3
= 3(x2- 2/3x + 1/9 ) + 8/3
= 3(x-1/3)2 + 8/3 > 8/3 \(\forall\)x
dấu ''='' xảy ra <=> x = 1/3
/HT\
Nhầm đề rồi mấy bạn trả lời
Bảo là giá trị nguyên của ,\(\frac{2x-3}{3x+2}\) , các bạn ghi là \(3x^2-2x+3\)rồi
HT
TH1: x<=4/3
B=4-3x+3-2x+2-x=-6x+9
x<=4/3 mà x nguyên
nên \(x\in\left\{...;0;1\right\}\)
B=-6x+9 nên hàm số nghịch biến trên R
=>Khi x tăng thì y giảm
Khi x=0 thì \(B=-6\cdot0+9=9\)
TH2: 4/3<=x<=3/2
\(B=2-x+3-2x+3x-4=1\)
TH3: 3/2<=x<=2
\(B=2-x+3-2x+4-3x=-6x+9\)
B=-6x+9 nên hàm số B=-6x+9 nghịch biến trên R
3/2<=x<=2 mà x nguyên nên x=2
=>\(B=-6\cdot2+9=-12+9=-3\)
TH4: x>=2
\(B=x-2+2x-3+3x-4=6x-9\)
B=6x-9 nên B đồng biến trên R
=>Khi x=2 thì B=6x-9 nhỏ nhất trong khoảng \([2;+\infty)\)
=>B=6*2-9=3
Vậy: \(B_{min}=-3\) khi x=2