K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

a) Xét:

\(+p=2\Rightarrow3p+5=2.3 +5=11\left(TM\right)\)

+) \(p>2\). Do P là so nguyen to nen p lẻ \(\Rightarrow3p+5\)chan và \(3p+5>2\)\(\Rightarrow3p+5là\)hop so 

Vay p=2

b) Xét:'

\(+p=2\Rightarrow p+8=10\left(ktm\right)\)

\(+p=3\Rightarrow p+8=11;p+10=13\left(TM\right)\)

\(+p>3\).Do p là so nguyen to nen \(p=3k+1;p=3k+2\left(k\inℕ^∗\right)\)

\(-p=3k+1\Rightarrow p+8=3\left(k+3\right)⋮3\left(loại\right)\)

\(-p=3k+2\Rightarrow p+10=3\left(k+4\right)⋮3\left(loại\right)\)

Vay p=3
 

23 tháng 9 2018

a/ Xét p lẻ => 3p + 5 là số chẵn nên chia hết cho 2 mà 3p + 5 > 2 nên loại.

Xét p = 2 => 3.2 + 5 = 11 (nhận)

b/ Ta thấy 8 chia 3 dư 2; 10 chia 3 dư 1. Nên để đồng thời p + 8 và p + 10 là số nguyên tố thì p khi chia cho 3 không thể có số dư là 1 hoặc 2.

=> p = 3 

12 tháng 12 2016

p là 2 

2 là số nguyên tố

2 + 3 = 5 (số nguyên tố)

Vậy p= 2

vì p+3 là 1 số nguyên tố 

=>p=2 vì 1 số lẻ+1 số chẵn = 1 số lẻ mà các số nguyên tố chỉ có 2 chẵn

mà 2+3=5[3 và 5 đều là số nguyên tố] nên p=2

12 tháng 5 2017

- Xét p=2 => p+4 =6 ( không là số nguyên tố )=> loại

- xét p=3 => p+4 =7 (t,m) và p+8 =11 ( t.m)

Nếu p>3 , p nguyên tố => p  có dạng 3k+1 hoặc 3k+2 (k nguyen dương)

- p=3k+1 => p+8 = 3k+1+8 =3k+9 chia hết cho 3 => loại

- p=3k+2 => p+4 = 3k+2+4 = 3k+6 chia hết cho 3 => loại

=>  với mọi p>3 đều không thỏa mãn 

Vậy  p=3 là giá trị thỏa mãn cần tìm 

12 tháng 5 2017

Số nguyên p là 3

23 tháng 3 2017

Nếu a=1

=> ((a-1).(a-2)=(1-1).(1-2)

=0 ((loại vì ko là số ngto)

​  Nếu a=2

=(a --1).(a-2)

=(2-1).(2-2)

​=0 ((loại vì ko là số ngto)

 Nếu a=3

=> (a-1) .(a-2)= (3-1) .(3-2)

= 3 ( chọn)

Nếu a>3

=> a= 3k+1 hoặc a= 3 k+2

​ Nếu a= 3k+1

=>(a -1). ((a-2) =3k .3k-1

​= 6k^2 -3k

=3.(2k^2 -k) (loại vì ko là số ngto)

  Nếu a=3k+2( làm tương tự như 3k+1 nha)

14 tháng 12 2015

a)Xét P =5k ( vì P là số nguyên tố)

 P+2=7 ; P+6 = 11 ; P+8 =13 ; P +14=19 (T/m)

Xét P =5k+1( k thuộc N)

P+14=5k+1+14 = 5k+15 chia hết cho 5(ko t/m)

Xét P=5k+2 

P + 8=5k+10 chia hêt cho 5 ( ko t/m)

Xét P=5k+3

P+2=5k+3=5k+5 chia hết cho 5 ( ko t/m)

Xét  P = 5k+4

P+6 =5k+4+6=5k+10 chia hết cho 5 ( ko t/m)

Vậy P = 5

 bài a này mik còn có cách giải khác nhưng dài hơn . 

14 tháng 12 2015

b) P là số nguyên tố > 3 nên  P có dạng : 3k+1 và 3k+2

TH1 : p= 3k+1 .Ta có:

2p+1 = 2(3k+1) = 6k+2+1 = 6k+3 chia hết cho 3 nên là hợp số ( loại)

TH2:p=3k+2 . Ta có:

2p+1 = 2(3k+2) = 6k+4+1=6k+5 ( là số nguyên tố theo đề bài ta chọn TH này)

Vậy 4p+1 = 4(3k+2)+1=12k+8+1 = 12k+9 . ta thấy 12k và 9 đều chia hết cho 3 nên(12k+9) là hợp số 

Do đó 4p+1 là hợp số ( đpcm)

mik làm bài a và b rùi,tick nhé

6 tháng 12 2015

vì A = 1.2.3.4.5.....98.99.100 là hợp số vì có nhiều hơn 2 ước

mà 111 cũng là hợp số nên A+111 là hợp số

tick mình nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

khi nào câu hỏi mình lên bạn nhớ trả lời hộ mình nhé

26 tháng 12 2017

mk biet cau tra loi rui

26 tháng 12 2017

bạn giúp mình với