K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

Đặt A=\(\frac{n+7}{3n-1}\)

=> 3A=\(\frac{3n+21}{3n-1}\)\(=\frac{3n-1+22}{3n-1}\)\(=\frac{3n-1}{3n-1}+\frac{22}{3n-1}\)\(=1+\frac{22}{3n-1}\)

Vì 1 là số nguyên => để A nguyên thì 22/3n-1 nguyên => 22 chia hết cho 3n-1 => 3n-1 thuộc Ước của 22

Ư(22)={1;-1;2;-2;11;-11;22;-22}

Sau đó bạn kẻ bảng, xét trường hợp nhé! Bài dài nên mình chỉ làm đến đây thôi.

b) Đặt A=\(\frac{3n+2}{4n-5}\) => 4A=\(\frac{12n+8}{4n-5}\)\(=\frac{12n-15+23}{4n-5}\)\(=\frac{12n-15}{4n-5}+\frac{23}{4n-5}\)\(=3+\frac{23}{4n-5}\)

Vì 3 thuộc N => Để A thuộc N thì 23/4n-5 thuộc N

=> 4n-5 thuộc Ước của 23

Ư(23)={ 1;-1;23;-23}

Tương tự phần a, bạn cũng kẻ bảng xét trường hợp nhé

26 tháng 6 2016

a)      /(/frac{n+7}{3n-1}

9 tháng 2 2017

\(\frac{3n+2}{4n-5}\) là số tự nhiên => \(4.\frac{3n+2}{4n-5}\) => \(\frac{12n+8}{4n-5}\) là số tự nhiên :

Thực hiện phép chia :

12n + 8 4n - 5 3 12n - 15 - 23

=> \(\frac{12n+8}{4n-5}=3+\frac{23}{4n-5}\)

Để \(3+\frac{23}{4n-5}\) là số tự nhiên <=> \(\frac{23}{4n-5}\) là số tự nhiên

=> 4n - 5 \(\in\) Ư(23) = { -23;-1;1;23 }

Ta có : 4n - 5 = - 23 => 4n = - 18 => n = - 9/2 ( loại )

4n - 5 = - 1 <=> 4n = 4 => n = 1 (TM)

4n - 5 = 1 => 4n = 6 => n = 3/2 (loại)

4n - 5 = 23 => 4n = 28 => n = 7 (TM)

Vậy n = { 1; 7 }

9 tháng 8 2016

Đặt A=(3n+2)/(4n-5) 

Để A là số tự nhiên thi

3n+2 chia hết cho 4n-5

4(3n+2)chia hết cho 4n-5

12n+8 chia hết cho 4n-5

12n-15+8+15 chia hết cho 

4n-5

23chia hết cho 4n-5

=>4n-5 thuộc Ư(23)

4n-5 thuộc {1;23;-1;-23}

4n thuộc{6;28;4;-18}

n thuộc{7;1}

 

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.

9 tháng 8 2016

Để \(\frac{n+7}{3n-1}\)là số nguyên thì n + 7 phải chia hết cho 3n - 1

=> 3(n + 7) - 22 chia hết cho 3n - 1

=> 22 chia hết cho 3n - 1

=> 3n - 1 thuộc {1 ; 2 ; 11 ; 22} 

=> 3n thuộc {2 ; 3 ; 12 ; 23}

=> n thuộc {1 ; 4}

10 tháng 8 2016

a) gọi D là UCLN(3n-2;4n-3)

\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho  D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D

\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D

\(\Rightarrow\)(12n-9-12n+8) chia hết cho D

\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}

hay UCLN(3n-2;4n-3) \(\in\){1;-1}

chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản

b) +) để A là phân số thì n-3\(\ne\)0

                             =>n\(\ne\)3

+) ta có  \(\frac{n+1}{n-3}\)\(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)

để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên 

=> 4 chia hết n-3

=> n-3 \(\in\)U(4)

mà U(4) = {-1;-2;-4;1;2;4}                             

ta có bảng

n-3-1-2-4124
n21-1457

vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
 

25 tháng 4 2023

ko nhìn ra