Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3n+7⋮2n+1\)
\(\Rightarrow2\left(3n+7\right)⋮2n+1\)
\(\Rightarrow6n+14⋮2n+1\)
\(\Rightarrow6n+3+11⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)+11⋮2n+1\)
\(3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow11⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(11\right)\)
\(\Rightarrow2n+1\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow2n\in\left\{-2;0;-12;10\right\}\)
\(\Rightarrow n\in\left\{-1;0;-6;5\right\}\)
Ta có: 3n+7 chia hết 2n+1 <=> 2(3n+7) chia hết 2n+1 <=> 6n+14 chia hết 2n+1
2n+1 chia hết 2n+1 3(2n+1) chia hết 2n+1 6n+3 chia hết 2n+1
=>(6n+14)-(6n+3) chia hết 2n+1
<=> 6n+14-6n+3 chia hết 2n+1
<=> 17 chia hết 2n+1
=> 2n+1 thuộc Ư(17)={-1;-17;1;17}
<=> 2n thuộc {-2;-18;0;16}
<=> n thuộc {-1;-9;0;8}
Vậy.....................
K CHO MK NHA ~~~~
a) Ta có : n+7 \(⋮\)n+2
\(\Rightarrow\)n+2+5\(⋮\)n+2
mà n+2\(⋮\)n+2
\(\Rightarrow\)5\(⋮\)n+2
\(\Rightarrow n+2\in_{ }\){-5;-1;1;5}
\(\Rightarrow n\in\){-7;-3;-1;2}
b,c,d tương tự
Lời giải:
$2n+3\vdots 3n+2$
$\Rightarrow 3(2n+3)\vdots 3n+2$
$\Rightarrow 6n+9\vdots 3n+2$
$\Rightarrow 2(3n+2)+5\vdots 3n+2$
$\Rightarrow 5\vdots 3n+2$
$\Rightarrow 3n+2\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{\frac{-1}{3}; -1; 1; \frac{-7}{3}\right\}$
Do $n$ nguyên nên $n\in \left\{-1;1\right\}$
Thử lại thấy thỏa mãn.
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
Ta có:
3n chia hết cho n - 1
n - 1 chia hết cho n - 1 => 3( n - 1 ) chia hết cho n - 1 => 3n - 3 chia hết cho n - 1
=> ( 3n - 3 ) - 3n chia hết cho n - 1
=> - 3 chia hết cho n - 1
=> n - 1 thuộc Ư(-3)
=> n - 1 thuộc { 1; 3; -1; -3 }
- Với n - 1 = 1 => n = 1+ 1
=> n = 2 - Với n - 1 = 3 => n = 3 + 1
=> n = 4 - Với n - 1 = -1 => n = -1 + 1
=> n = 0 - Với n - 1 = -3 => n = -3 + 1
=> n = -2
Vậy n thuộc { 2; 4; 0; -2 }
(3n + 7) ⋮ (2n + 3)
⇒ 2.(3n + 7) ⋮ (2n + 3)
⇒ (6n + 14) ⋮ (2n + 3)
⇒ (6n + 9 + 5) ⋮ (2n + 3)
⇒ [3.(2n + 3) + 5] ⋮ (2n + 3)
Để (3n + 7) ⋮ (2n + 3) thì 5 ⋮ (2n + 3)
⇒ 2n + 3 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 2n ∈ {-8; -4; -2; 2}
⇒ n ∈ {-4; -2; -1; 1}
3n + 7 \(⋮\) 2n + 3 (n \(\in\) Z)
2.(3n + 7) ⋮ 2n + 3
6n + 14 ⋮ 2n + 3
3.(2n + 3) + 5 ⋮ 2n + 3
5 ⋮ 2n + 3
2n + 3 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-4; -2; -1; 1}
mik ko bt câu 1, 2 chỉ bt câu 3 thôi:
c)
- 3n+7 chia hết cho 2n+1
=> 2.(3n+7) chia hết cho 2n+1
=> 6n+14 chia hết cho 2n+1
- 2n+1 chia hết cho 2n+1
=> 3.(2n +1) chia hết cho 2n+1
=> 6n+3 chia hết cho 2n+1
Do đó: 6n+14 - (6n+3) chia hết cho 2n+1
=> 6n+14 - 6n - 3 chia hết cho 2n+1
=> ( 6n - 6n ) - ( 14 - 3 ) chia hết cho 2n+1
=> 11 chia hết cho 2n+1
=> 2n+1 thuộc Ư (11) = { 1,11 }
Ta có bảng sau:
2n+1 | 1 | 11 |
n | 0 | 5 |
Vậy n thuộc { 0, 5 }
Lời giải:
$3n+7\vdots 2n+3$
$\Rightarrow 2(3n+7)\vdots 2n+3$
$\Rightarrow 6n+14\vdots 2n+3$
$\Rightarrow 3(2n+3)+5\vdots 2n+3$
$\Rightarrow 5\vdots 2n+3$
$\Rightarrow 2n+3\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{-1; -2; 1; -4\right\}$