Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : n+7 chia hết n+2
=> (n+2)+5 chia hết cho n+2
=> 5 chia hết n+2
=> n+2 c Ư (5) = { 1;5 }
+) n+2 = 1 => n=-1
+) n+2=5 => n=3
vậy n = -1 và n = 3
Ta có:
\(n+7⋮n+2\)
\(\Leftrightarrow\left(n+2\right)+5⋮n+2\)
Vì \(n+2⋮n+2\)
Để \(\left(n+2\right)+5⋮n+2\)
Thì \(5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+2=1\\n+2=5\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=3\end{cases}}}\)
Vậy....
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
mik ko bt câu 1, 2 chỉ bt câu 3 thôi:
c)
- 3n+7 chia hết cho 2n+1
=> 2.(3n+7) chia hết cho 2n+1
=> 6n+14 chia hết cho 2n+1
- 2n+1 chia hết cho 2n+1
=> 3.(2n +1) chia hết cho 2n+1
=> 6n+3 chia hết cho 2n+1
Do đó: 6n+14 - (6n+3) chia hết cho 2n+1
=> 6n+14 - 6n - 3 chia hết cho 2n+1
=> ( 6n - 6n ) - ( 14 - 3 ) chia hết cho 2n+1
=> 11 chia hết cho 2n+1
=> 2n+1 thuộc Ư (11) = { 1,11 }
Ta có bảng sau:
2n+1 | 1 | 11 |
n | 0 | 5 |
Vậy n thuộc { 0, 5 }
1) Để \(3n+7⋮2n+1\) \(\Leftrightarrow\)\(2.\left(3n+7\right)⋮2n+1\)
- Ta có: \(2.\left(3n+7\right)=6n+14=\left(6n+3\right)+11=3.\left(2n+1\right)+11\)
- Để \(2.\left(3n+7\right)⋮2n+1\)\(\Rightarrow\)\(3.\left(2n+1\right)+11⋮2n+1\)mà \(3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow\)\(11⋮2n+1\)\(\Rightarrow\)\(2n+1\inƯ\left(11\right)\in\left\{\pm1;\pm11\right\}\)
- Ta có bảng giá trị:
\(2n+1\) | \(-1\) | \(1\) | \(-11\) | \(11\) |
\(n\) | \(-1\) | \(0\) | \(-6\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-6,-1,0,5\right\}\)
2) Ta có: \(n^2+25=\left(n^2-4\right)+29=\left(n+2\right).\left(n-2\right)+29\)
- Để \(n^2+25⋮n+2\)\(\Rightarrow\)\(\left(n+2\right).\left(n-2\right)+29⋮n+2\)mà \(\left(n+2\right).\left(n-2\right)⋮n+2\)
\(\Rightarrow\)\(29⋮n+2\)\(\Rightarrow n+2\inƯ\left(29\right)\in\left\{\pm1;\pm29\right\}\)
- Ta có bảng giá trị:
\(n+2\) | \(-1\) | \(1\) | \(-29\) | \(29\) |
\(n\) | \(-3\) | \(-1\) | \(-31\) | \(27\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-31,-3,-1,27\right\}\)
3) Ta có: \(3n^2+5=\left(3n^2-3\right)+8=3.\left(n+1\right).\left(n-1\right)+8\)
- Để \(3n^2+5⋮n-1\)\(\Rightarrow\)\(3.\left(n+1\right).\left(n-1\right)+8⋮n-1\)mà \(3.\left(n+1\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow\)\(8⋮n-1\)\(\Rightarrow n-1\inƯ\left(8\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
- Ta có bảng giá trị:
\(n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) |
\(n\) | \(0\) | \(2\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-7\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-7,-3,-1,0,2,3,5,9\right\}\)
a ) 3n + 25 ⋮ n - 4 <=> 3.( n - 4 ) + 37 ⋮ n - 4
Vì n - 4 ⋮ n - 4 . Để 3.( n - 4 ) + 37 ⋮ n - 4 thì 37 ⋮ n - 4 => n - 4 ∈ Ư ( 37 ) = { + 1 ; + 37 }
Ta có : n - 4 = 1 => n = 1 + 4 = 5 ( nhận )
n - 4 = - 1 => n = - 1 + 4 = 3 ( nhận )
n - 4 = 37 => n = 37 + 4 = 41 ( nhận )
n - 4 = - 37 => n = - 37 + 4 = - 33 ( nhận )
Vậy n ∈ { - 33 ; 3 ; 5 ; 41 }
Câu b tương tự
n2 + n + 17 ⋮ n + 1
n( n + 1 ) + 17 ⋮ n + 1
Vì n( n + 1 ) ⋮ n + 1
=> 17 ⋮ n + 1
=> n + 1 thuộc Ư(17) = { 1; 17; -1; -17 }
Tự làm
b) n2 + 25 ⋮ n + 2
n2 + 2n - 2n + 25 ⋮ n + 2
n( n + 2 ) - ( 2n - 25 ) ⋮ n + 2
Vì n( n + 2 ) ⋮ n + 2
=> 2n - 25 ⋮ n + 2
2n + 4 - 29 ⋮ n + 2
2( n + 2 ) - 29 ⋮ n + 2
Vì 2( n + 2 ) ⋮ n + 2
=> 29 ⋮ n + 2
=> n + 2 thuộc Ư(29) = { 1; 29; -1; -29 }
Tự làm
c) 3n2 + 5 ⋮ 3n + 1
3n2 + n - n + 5 ⋮ 3n + 1
n( 3n + 1 ) - ( n - 5 ) ⋮ 3n + 1
Vì n( 3n + 1 ) ⋮ 3n + 1
=> n - 5 ⋮ 3n + 1
<=> 3( n - 5 ) ⋮ 3n + 1
<=> 3n - 15 ⋮ 3n + 1
<=> 3n + 1 - 16 ⋮ 3n + 1
Vì 3n + 1 ⋮ 3n + 1
=> 16 ⋮ 3n + 1
=> 3n + 1 thuộc Ư(16) = { 1; 2; 4; 8; 16; -1; -2; -4; -8; -16 }
=> tự làm nốt xong nhớ thay x vào xem có thỏa mãn ko
làm hộ?????
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé