K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NL
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NP
1
20 tháng 10 2016
Đặt \(n^4+n^3+n^2+n+1=a^2\)
\(\Rightarrow4\left(n^4+n^3+n^2+n+1\right)=\left(2a\right)^2\)
Mà ta có : \(\left[n\left(2n+1\right)\right]^2< \left(2a\right)^2< \left[n\left(2n+1\right)+2\right]^2\)
\(\Rightarrow4a^2=\left[n\left(2n+1\right)+1\right]^2\Rightarrow n=3\)thỏa mãn đề bài.
22 tháng 6 2017
Đặt n-2= a^3; n-5=b^3 (a,b thuộc Z)
Ta có
\(a^3-b^3=\left(n-2\right)-\left(n-5\right)\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)=3\)
Ta thấy \(a^2+ab+b^2\ge0\)nên
TA CÓ BẢNG :
a-b | a2+ab+b2 | a | b | |
---|---|---|---|---|
1 | 3 | |||
3 | 1 | |||
BV
11 tháng 3 2019
Bài 1. x^2 \(\equiv\)8 (mod 0,1). (cmdd)
T tự: y^2 \(\equiv\)8 (mod 0,1)
=> x^2+y^2 \(\equiv\)8 (mod 0,1,2)
Mà 8z+6 \(\equiv\)8 (mod 6)
=> đpcm
lên gg gõ thẳng đề bài rồi tham khảo nhé. mình bận rồi
dễ thấy 1 số chính phương chia hết cho 4 hoặc chia 4 dư 1
TH1: 2n−15⋮42n−15⋮4 Từ đây suy ra 2n+1⋮42n+1⋮4 ( vô lý )
Th2: 2n−15−1⋮42n−15−1⋮4 Từ đây suy ra 2n⋮42n⋮4⇒n⩾4