Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1/ Ta có: 2n + 1 = a2 ; 3n + 1 = b2
=> 4(2n + 1) - (3n + 1) = 4a2 - b2
<=> 5n + 3 = (2a - b)(2a + b)
Ta thấy 2a + b > 1
Giờ chỉ việc chứng minh
2a - b = 1 (vô nghiệm là có thể kết luận rồi nhé )
Vì d là ước nguyên dương của 2n2 => d.q= 2n2
=> n2= d.q:2
Ta có: n2+d= d.q:2+d
=> n2+d= d.(q:2+1)
Vậy n2+d không phải là số chính phương ĐPCM
này các bn oi cho mk hoi
tại sao \(d\left(\frac{q}{2}+1\right)\)ko là số cp
Đặt \(n^4+n^3+n^2+n+1=a^2\)
\(\Rightarrow4\left(n^4+n^3+n^2+n+1\right)=\left(2a\right)^2\)
Mà ta có : \(\left[n\left(2n+1\right)\right]^2< \left(2a\right)^2< \left[n\left(2n+1\right)+2\right]^2\)
\(\Rightarrow4a^2=\left[n\left(2n+1\right)+1\right]^2\Rightarrow n=3\)thỏa mãn đề bài.