K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2017

Vì A chia cho 2007 dư 32 nên A có dạng A = 2007*k + 32 với k >=1. 
Ta tìm k nhỏ nhất sao cho A chia cho 2005 dư 23. Ta có 
A = 2007*k + 32 = 2005*k + (2*k + 9) + 23 
=> 2*k + 9 chia hết (là bội) cho 2005. 
=> k nhỏ nhất khi 2*k + 9 = 2005 
=> k = 998 

19 tháng 4 2018

Ta có

  2 1 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 +...+ 2 98 + 2 99 + 2 100

= 2 1 + ( 2 2 + 2 3 + 2 4 ) + ( 2 5 + 2 6 + 2 7 ) +...+ ( 2 98 + 2 99 + 2 100 )

= 2 + 2 2 1 + 2 + 2 2 + 2 5 1 + 2 + 2 2 + . . . + 2 98 1 + 2 + 2 2

= 2 + 2 2 . 7 + 2 5 . 7 + . . . + 2 98 . 7 = 2 + 7 2 2 + 2 5 + . . . + 2 98

Mà  7 . 2 2 + 2 5 + . . . + 2 98 ⋮ 7  

Nên  2 + 7 2 2 + 2 5 + . . . + 2 98 : 7   d ư   2

17 tháng 10 2019

Đề kiểm tra Toán 6 | Đề thi Toán 6

Ta có A=20+21+22+23+...2100

2A=21+22+...+2101

2A-A=(21+22+...+2100)-(20+21+...+2100)

A=2101-1

Mà 2101-1=(........02)-1=........01 chia 100 dư 1

Chúc bạn học tốt.

A=(1+2+2^2)+2^3(1+2+2^2)+...+2^2013(1+2+2^2)+2^2016

=7(1+2^3+...+2^2013)+2^2016

Vì 2^2016 chia 7 dư 1

nên A chia 7 dư 1

5 tháng 10 2023

thì mình lấy số đó cộng với số dư sẽ chia hết cho số đó 

mà số chia luôn lớn hơn số dư 

sẽ ra kết quả 

 

\(A=1+2+2^2+2^3+...+2^{100}\)

\(=1+\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=1+2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=1+3\left(2+2^3+...+2^{99}\right)\)

=>A chia 3 dư 1

16 tháng 10 2023

a: \(A=1+2+2^2+...+2^{41}\)

=>\(2A=2+2^2+2^3+...+2^{42}\)

=>\(2A-A=2^{42}-1\)

=>\(A=2^{42}-1\)

b: \(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{40}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{40}\right)⋮3\)

\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{39}\left(1+2+2^2\right)\)

\(=7\left(1+2^3+...+2^{39}\right)⋮7\)

23 tháng 12