Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x, y nguyên dương
=> x, y >0
Ta có: y : 4 dư 0; 1; 2; 3 => \(y^2\): 4 dư 0; 1
Vì 32\(⋮\)4
=> \(3^x\): 4 dư 0 hoặc 1
Mà x >0 => \(3^x\): 4 dư 1 (1)
Với x là số lẻ => x = 2k + 1
=> \(3^{2k+1}=3^{2k}.3\):4 dư 3 loại vì (1)
=> x là số chẵn => x = 2k (k nguyên dương )
Khi đó: \(3^{2k}-32=y^2\)
<=> \(\left(3^k-y\right)\left(3^k+y\right)=32\)
Vì x, y nguyên dương => \(3^k+y>3^k-y>1\)
Có thể xảy ra 2 TH
TH1: \(\hept{\begin{cases}3^k+y=16\\3^k-y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}3^k=9\\y=7\end{cases}\Leftrightarrow\hept{\begin{cases}k=2\\y=7\end{cases}}}\)=> x = 4; y = 7 thử lại thỏa mãn
TH2: \(\hept{\begin{cases}3^k+y=8\\3^k-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}3^k=6\\y=2\end{cases}}\)loại
Vậy x = 4 ; y= 7
có vô số nghiệm:
xy =z2 => x = \(\frac{z^2}{y}\)
nếu z=2 => y =2; x =2
nếu z=1 =>x=1;y=1
nếu z =3 => y = 3;x=3
.................
\(x^2-y^2=2011\)
\(\Leftrightarrow(x-y)(x-y)=2011\)
Vì 2011 là số nguyên tố nên ước nguyên của 2011 chỉ có thể là \(\pm1;\pm2011\). Từ đó suy ra nghiệm \((x;y)\)là : \((1006;1005);(1006;-1005);(-1006;-1005);(-1006;1005)\).
P/S : Hông chắc :>
\(x^2-y^2=\left(x-y\right)\left(x+y\right)=105=3.35=5.21=7.15\)
+ Với \(\left(x-y\right)\left(x+y\right)=3.35\Rightarrow x-y=3;x+y=35\Rightarrow x=19;y=16\)
+ Với \(\left(x-y\right)\left(x+y\right)=5.21\Rightarrow x-y=5;x+y=21\Rightarrow x=13;y=8\)
+ Với \(\left(x-y\right)\left(x+y\right)=7.15\Rightarrow x-y=7;x+y=15\Rightarrow x=11;y=4\)
\(\Leftrightarrow9x^2-6x\left(16y+24\right)+\left(16y+24\right)^2=9x^2+16x+32\)
\(\Leftrightarrow x\left(3y+5\right)=8y^2+24y+17\)
\(\Leftrightarrow x=\dfrac{8y^2+24y+17}{3y+5}\in Z\)
\(\Rightarrow9x=\dfrac{9\left(8y^2+24y+17\right)}{3y+5}\in Z\)
\(\Rightarrow24y+62-\dfrac{157}{3y+5}\in Z\)
\(\Rightarrow3y+5=Ư\left(157\right)=\left\{-157;-1;1;157\right\}\)
\(\Rightarrow y=...\)
\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0
(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0
\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0
(\(x\) - 2).(\(x^4\) - y2 - 3) = 8
8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}
Lập bảng ta có:
\(x-2\) | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
\(x\) | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
\(x^4\) - y2 - 3 | -1 | -2 | -4 | -8 | 8 | 4 | 2 | 1 |
y | \(\pm\)\(\sqrt{1294}\) | \(\pm\)\(15\) | \(\pm\)1 | \(\pm\)\(\sqrt{6}\) | y2 = -10 (ktm) | \(\pm\)\(\sqrt{249}\) | \(\pm\)\(\sqrt{1291}\) | \(\pm\)\(\sqrt{9996}\) |
vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:
(\(x\); y) = (0; -1;); (0; 1)