Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-y^3-2y^2-3y-1=0\)
\(<=>x^3=y^3+2y^2+3y+1\)≤\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)
Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)
Từ (1) và (2)
\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)
\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)
Xong giải ra thôi
Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời
Ta có: \(3x^2+5y^2=345\)
\(\Leftrightarrow3x^2\le345\Leftrightarrow x^2\le\frac{345}{3}=115\)
Ta cũng từ phương trình trên suy ra \(x^2\)là số chính phương chia hết cho 5
\(\Rightarrow x^2=0;25;100\)
(1) \(x^2=0\Rightarrow y^2=69\)( không thỏa mãn vì y nguyên )
(2) \(x^2=25\Rightarrow y^2=54\)( không thỏa vì y nguyên )
(3) \(x^2=100\Rightarrow y^2=9\)
Vậy phương trình \(3x^2+5y^2=345\)có nghiệm nguyên \(\left(x;y\right)=\left(-10;-3\right);\left(10;-3\right);\left(-10;3\right)\)\(;\left(10;3\right)\)
2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)
kẻ bảng ra
\(x^2-2x+1-y^2=12\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=12\)
đến đây lập luận ước của 12 bạn tự làm nốt nha
a) Thay \(x=1\)vào pt ta được :
\(1+k-4-4=0\)
\(\Leftrightarrow k-7=0\)
\(\Leftrightarrow k=7\)
b) Thay \(k=7\)vào pt ta được :
\(x^3+7x^2-4x-4=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(8x^2-8x\right)+\left(4x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2+8x+4=0\end{cases}}\)
* \(x-1=0\Leftrightarrow x=1\)
* \(x^2+8x+4=0\)
Ta có : \(\Delta=8^2-4\times4=48>0\)
\(\Rightarrow\)pt có 2 nghiệm : \(\orbr{\begin{cases}x_1=\frac{-8-\sqrt{48}}{2}=-4-2\sqrt{3}\\x_2=\frac{-8+\sqrt{48}}{2}=-4+2\sqrt{3}\end{cases}}\)
Vậy ...
cái này phải vận dụng cái giả thiết cho là nghiệm nguyên dương
ai tích cho mình mình tích lại cho!
\( 2x^2+4x=19-3y^2\)
<=>\(2(x^2+2x)=19-3y^2\)
\(<=> x^2+2x=19-3y^2/2\)
Vì x^2+2x thuộc Z
\(=>19-3y^2/2\) thuộc Z
Ta có:
\(19-3y^2/2=(21-3y^2-2)/2=3(7-y^2)/2 -1\)
Vì (3,2)=1
\(=>7-y^2 \) chia hết cho 2
Đặt \(7-y^2=2t\)(t thuộc Z)
\(=>y^2=7-2t\) (1)
Lại có:
\(x^2+2x=19-3y^2/2=3(7-y^2)/2 -1\)
\(<=>(x+1)^2=3(7-y^2)/2 >=0\)
\(=>y^2≤ 7\)
\(=>7-2t≤7\)
\(=>t>=0\)(2)
Từ (1),ta có:
\(7-2t>=0\)
\(<=>t≤7/2\)(3)
Từ (2) và (3)
\(=>t=0,1,2,3\)
Thay vào (1) sẽ tìm được y và từ đó tìm đc x thôi