K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

\(123456789\cdot\left(\frac{1}{10}\right)^n=12.3456789\)

\(\Rightarrow\left(\frac{1}{10}\right)^n=\frac{12.3456789}{123456879}=0.0000001=\frac{1}{10000000}=\left(\frac{1}{10}\right)^8\)

\(\Rightarrow n=8\)

Vậy \(n=8\)

27 tháng 10 2016

Ta có: n10+1 chia hết 10

=>n10=n5*2=(n5)2 tận cùng bằng 9

=>n5 tận cùng bằng 3 hoặc 7

=>n tận cùng bằng 3 hoặc 7

23 tháng 2 2017

lại câu cũ rích. mình giờ chuyên gia đồ cổ.

\(A=n^{10}+1=n^{10}-9+10=\left(\left(n^5\right)^2-3^2\right)+10\)

\(A=\left(n^5-3\right)\left(n^5+3\right)+10\)

\(A=\left[n^5-n+\left(n+3\right)\right]\left[n^5-n+\left(n-3\right)\right]+10\)

\(A=\left[\left(n^5-n\right)^2+\left(n^5-n\right)\left(n-3\right)+\left(n^5-n\right)\left(n+3\right)\right]+\left[\left(n+3\right)\left(n-3\right)\right]+\left[10\right]\)\(A=B+C+10\)

\(B=\left[\left(n^5-n\right)^2+\left(n^5-n\right)\left(n-3\right)+\left(n^5-n\right)\left(n+3\right)\right]=\left(n^5-n\right)\left[\left(n^5-n\right)+\left(n-3\right)+\left(n+3\right)\right]\)

\(E=\left(n^5-n\right)=n\left(n^4-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

\(E=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left[n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\right]+\left[5n\left(n-1\right)\left(n+1\right)\right]\)\(E=M+5N\)

c/m B chia hết 10 với mọi n thuộc N:

M: là tích 5 số tự nhiên liên tiếp=> chia hết cho 10

N: là 3 số tự nhiên liên tiếp => chia hết cho 2 =>5N chia hết cho 10

=> E chia hết cho 10

B=E.(....)=> B chia hết cho 10

\(A=\left(B+C+10\right)⋮10\Rightarrow C⋮10\Rightarrow\left(n-3\right)\left(n+3\right)⋮10\)

=> n có tận cùng là 3 hoạc 7

Kết luận: \(\left[\begin{matrix}n=10k+3\\n=10k+7\end{matrix}\right.\)

15 tháng 12 2017

1/3 + 1/6 + 1/10 + ... + 2/n(n+1) = 2003/2004

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{2}-\frac{2003}{4008}\)

\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)

\(\Rightarrow n+1=4008\)

\(\Rightarrow n=4008-1=4007\)

a: Bậc của M là 4

Bậc của N là 4

b: N+K=M nên K=M-N

\(=x^2y^2-4x^2y-4xy^2+6xy+10-x^2y^2-6xy-10\)

\(=-4x^2y-4xy^2\)

29 tháng 10 2021

\(\Rightarrow\left(15:3\right)^{2n}=625\\ \Rightarrow5^{2n}=5^4\Rightarrow n=2\left(B\right)\)

29 tháng 10 2021

B

16 tháng 1 2017

n=10

ko

14 tháng 8 2017

Bài 1 

1, Ta có \(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)

\(A=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(A=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)

\(A=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{25.28}\right)\)

\(A=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(A=5.\left(\frac{1}{4}-\frac{1}{28}\right)=5.\frac{3}{14}=\frac{15}{14}\)

Vậy \(A=\frac{15}{14}\)

2, 

a) \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=\frac{3}{n-5}\)

Suy ra để A có giá trị nguyên thì \(n-5\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Khi đó \(n-5\in\left\{1;-1;3;-3\right\}\)

Suy ra \(n\in\left\{6;4;8;2\right\}\)

Vậy ......

b) Ta có : \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=2+\frac{3}{n-5}\)

Để A có giá trị lớn nhất \(\Leftrightarrow\frac{2n-7}{n-5}\)lớn nhất \(\Leftrightarrow2+\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow n=6\)

Khi đó A = 5 

 Vậy A đạt GTLN khi và chỉ khi n = 6

7 tháng 10 2015

A = 2.22 + 3.23 + 4.24 + ... + n.2n 

2.A = 2.2+ 3.2+ 4.2+ ...+ n.2n+1

=> A - 2.A = 2.22 + (3.2- 2.23)  + (4.2- 3.24) + ...+ (n - n + 1).2- n.2n+1

=> A = 2.2+ 2+ 2+ ..+ 2- n.2n+ 1  = 22 + (2+ 2+ ....+ 2n+ 1) - (n+1).2n+1

=> A =  - 22 -  (2+ 2+ ....+ 2n+ 1) + (n+1).2n+1

Tính B = 2+ 2+ ....+ 2n+ 1 => 2.B =  2+ ....+ 2n+ 1 + 2n+2 => 2B - B = 2n+2 - 22 => B = 2n+2 - 22

Vậy A = 22 - 2n+2 + 22 + (n+1).2n+1 = (n+1).2n+1 - 2n+ 2 = 2n+1.(n + 1 - 2) = (n-1).2n+1 = 2(n-1).2n

Theo bài cho  A = 2(n-1).2n = 2n+10 => 2(n - 1) = 210 => n - 1 = 2 = 512 => n = 513

Vậy.............

10 tháng 10 2016

n= 513, tui chỉ biết đáp án nhưng không biết cách làm