K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

a/ \(A=\frac{3n+9}{n-4}=3+\frac{21}{n-4}\)

      Để \(A\in Z\) thì \(\left(n-4\right)\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

n - 4-13-3-7 21-21
n537111-325-17

                 Vậy n = {5;3;7;1;11;-3;25;-17}

b/ \(B=\frac{6n+5}{2n-1}=3+\frac{8}{2n-1}\)

   Để \(B\in Z\) thì \(\left(2n-1\right)\inƯ\left(8\right)=\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

2n - 11  -1  2-24-48-8
n103/2-1/25/2-3/29/2-7/2

               Vậy n = {1;0}

25 tháng 6 2016

Để A nguyên thì 3n + 9 chia hết cho n - 4

=> 3n - 12 + 21 chia hết cho n - 4

=> 3.(n - 4) + 21 chia hết cho n - 4

Do 3.(n - 4) chia hết cho n - 4 => 21 chia hết cho n - 4

=> n - 4 thuộc { 1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}

=> n thuộc { 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17}

Vậy n thuộc { 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17}

Để B nguyên thì 6n + 5 chia hết cho 2n - 1

=> 6n - 3 + 8 chia hết cho 2n - 1

=> 3.(2n - 1) + 8 chia hết cho 2n - 1

Do 3.(2n - 1) chia hết cho 2n - 1 => 8 chia hết cho 2n - 1

Mà 2n - 1 là số lẻ => 2n - 1 thuộc { 1 ; -1}

=> 2n thuộc { 2 ; 0}

=> n thuộc { 1 ; 0}

Vây n thuộc { 1 ; 0}
 

15 tháng 7 2016

a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê

<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}

<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}

Bạn tự tính giá trị với mỗi n

b) Tương tự

15 tháng 7 2016

Thank you các bạn nha !

19 tháng 6 2018

Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :

\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)

\(\Rightarrow3\left(n-4\right)+21⋮n-4\)

\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)

\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)

Rồi bạn lập bảng rồi tính giá trị ra

Tương tự câu b

\(6n+5=6n-1+6⋮6n-1\)

\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)

19 tháng 6 2018

a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4

                                                           hay 3n - 4 + 13 chia hết cho n - 4

                                                           nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )

                                                            do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}

                                                           hay n thuộc { -9;3;5;17}

Vậy n thuộc { -9;3;5;17}

b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1

hay 6n -1 + 6 chia hết cho 6n - 1

nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)

do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}

xét các trường hợp được n = 0

Vậy n = 0

29 tháng 7 2020

Ta có :

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)

\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)

\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)

\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)

b. Bổ sung điều kiện : A thuộc Z 

Để  \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)

\(\Leftrightarrow2n+3_{max}\in Z^-\)

Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)

\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)

Vậy Amax = 16 <=> n = -2

29 tháng 6 2022

Bn ơi 

4 tháng 7 2017

Ta có : \(\frac{n-3}{n+4}=\frac{n+4-7}{n+4}=\frac{n+4}{n+4}-\frac{7}{n+4}=1-\frac{7}{n+4}\)

Để \(\frac{n-3}{n+4}\in Z\) thì 7 chia hết cho n + 4

=> n + 4 thuộc Ư(7) = {-7;-11;7}

Ta có bảng : 

n + 4-7-117
n-11-5-33
18 tháng 8 2021

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

a. Để A đạt giá trị nguyên thì \(\frac{13}{2n-3}\)đạt giá trị nguyên

=> 2n - 3\(\in\){ - 13 ; - 1 ; 1 ; 13 }

=> n\(\in\){ - 5 ; 1 ; 2 ; 8 }

b. thêm điều kiện n\(\in\)Z

Để A đạt GTLN thì \(\frac{13}{2n-3}\)đạt GTNN <=> 2n - 3 đạt GTLN ( không thể tìm được n ) 

18 tháng 8 2021

Ta có :

A=6n−4/2n+3=6n+9−13/2n+3=3−13/2n+3

a. Để A nguyên thì 13/2n+3∈Z

⇒2n+3∈{−13;−1;1;13}

⇒2n∈{−16;−4;−2;10}

⇒n∈{−8;−2;−1;5}

b. Bổ sung điều kiện : A thuộc Z 

Để  A max thì 13/2n+3 min

⇔2n+3 max ∈ Z

Mà A∈Z⇔2n+3=−13 hoặc 2n+3=−1

⇒A max=3−13/−1=16⇔n=−2(tm:n∈Z)

Vậy A max = 16 <=> n = -2

max là giá trị lớn nhất 

min là giá trị nhỏ nhất

HT

NM
18 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

NM
19 tháng 8 2021

ta có 

\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)

Để A nguyên thì 2n+3 phải là ước của 13 nên

\(\orbr{\begin{cases}2n+3=\pm1\\2n+3=\pm13\end{cases}}\Rightarrow n\in\left\{-8,-2,-1,5\right\}\)

Để A lớn nhất thì \(\frac{13}{2n+3}\text{ nhỏ nhất}\Rightarrow2n+3=-1\Leftrightarrow n=-2\)

a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)

\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)

\(\Rightarrow3n-9-3n+12⋮n-4\)

\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)

\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)

\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)

b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)

\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)

\(\Rightarrow6n+5-6n+3⋮2n-1\)

\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)

Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{0;1\right\}\)

8 tháng 6 2019

* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4 

Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4 

Mà 3. ( n - 4 ) chia hết cho n - 4  

     3 . ( n - 4 ) + 21 chia hết cho n - 4  <=> 21 chia hết cho n - 4 

=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 } 

n - 4 = 1 => n = 5 

n - 4 = 3 => n = 7 

n - 4 = 7 => n = 11 

n - 4 = 21 => n = 25 

Vậy n = { 5 ; 7 ; 11 ; 25 }