K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

Giup mik vs!

9 tháng 7 2017

= (3n^3 + 10n^2 - 5)/(3n + 1)
A = (3n^3 + n^2 + 9n^2 + 3n - 3n - 1 -4)/(3n+1)
A= n^2 + 3n - 1 - 4/(3n+1)
biểu thức 3n^3 + 10n^2 - 5 chia hết cho giá trị của biểu thức 3n + 1 khi:
3n+1 = ±1,±2, ±4
=> n = 0,-2/3,1/3,-1,1,-5/3
chọn giá trị nguyên: n = 0,-1,1

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

13 tháng 12 2018

ĐKXĐ bạn tự xét nhé

\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)

\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)

\(M=\frac{a^2+a+1}{a-1}\)

Để M thuộc Z thì \(a^2+a+1⋮a-1\)

\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)

\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)

\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)

Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)

\(\Rightarrow3⋮a-1\)

\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)

Để M = 7 thì :

\(\frac{a^2+a+1}{a-1}=7\)

\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)

\(\Leftrightarrow a^2+a+1=7a-7\)

\(\Leftrightarrow a^2-6a+8=0\)

\(\Leftrightarrow a^2-2a-4a+8=0\)

\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)

Để M > 0 thì :

\(\frac{a^2+a+1}{a-1}>0\)

Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)

13 tháng 12 2018

Chứng minh \(a^2+a+1>0\):

Đặt \(B=a^2+a+1\)

\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)

\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)

\(\Rightarrow B>0\left(đpcm\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)

2 tháng 10 2016

mình mới học lớp 7

...............

/////////////////////////////////

...............................

17 tháng 8 2015

A=9n^2+24n+16-16=3(3n^2+8n) chia hết cho 3 vì n thuộc N