Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4n -1 chia hết cho 2n-3
2n - 3 chia hết cho 2n -3
=> 2(2n-3) chia hết cho 2n - 3
=> 4n - 6 chia hết cho 2n -3
=> 4n -1- ( 4n -6) chia hết cho 2n - 3
=> 4n -1 - 4n = 6 chia hết cho 2n - 3
=> 5 chia hết cho 2n-3
=> 2n -3 thuộc ước của 5
đến đây dễ rồi bạn tự làm nhé
\(\frac{n^2-2n+7}{n+2}=\frac{n\left(n+2\right)-4n+7}{n+2}=\frac{n\left(n+2\right)}{n+2}-\frac{4n+7}{n+2}=n-\frac{4n+7}{n+2}\in Z\)
=>4n+7 chia hết n+2
=>4(n+2)-1 chia hết n+2
=>1 chia hết n+2
=>n+2 thuộc Ư(1)={1} (vì n thuộc N)
=>n thuộc {O} (vì n thuộc N)
=>ko tồn tại n
n2-2n+7
n+2
=n(n+2)-4n+7/n+2=n(n+2)-4(n+2)+15/n+2=n-4 +(15/n+2) =======>>>>>>>>> n+2 thuộc Ư(15)={+-1;+-3;+-5;+-15}. rồi bạn lập ra từng trường hợp thôi
n+2
n2 + 2n - 7 chia hết cho n + 2
n.(n + 2) - 7 chia hết cho n + 2
Vì (n + 2) chia hết cho n + 2
=> n(n + 2) chia hết cho n + 2
=> -7 chia hết cho n + 2
=> n + 2 thuộc Ư(-7) = {1 ; -1 ; 7 ; -7}
Ta có bảng sau :
n + 2 | 1 | -1 | 7 | -7 |
n | -1 | -3 | 5 | -9 |
\(\left(4n-5\right)⋮n\)
\(\Rightarrow5⋮n\)
\(\Rightarrow n\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{\pm5;\pm1\right\}\)