Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d
Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d
⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}
Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.
Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1
Kết luận: n \(\ne\) 3k - 1
a = n/n + 1 + 2/n + 1
= n+2/n+1
= n+1+1/n+1
= 1+(1/n+1)
để a là số tự nhiên thì
1 chia hết cho n + 1
=> n + 1 thuộc Ư(1)
1)2n+5-2n-1
=>4 chia hết cho 2n-1
ước của 4 là 1 2 4
2n-1=1=>n=.....
tiếp với 2 và 4 nhé
a,2n-1 chia hết cho n+3
=> 2n+6-7 chia hết cho n+3
mà 2n+6 chia hết cho n+3
=>7 chia hết cho n+3
=> n-3 E Ư(7)
n-3={-7;-1;1;7}
=>n={-4;2;4;10}
b,6a+1 chia hết cho 2a-1
=>6a-3+4 chia hết cho 2a-1
mà 6a-3 chia hết cho 2a-1
=>4 chia hết cho 2a-1
=> 2a-1 E Ư(4)
2a-1={-4;-2;-1;1;2;4}
2a={-3;-1;0;2;3;5}
mà a là số nguyên
=> a={0;1}
Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1
⇒⎧⎩⎨2n+3⋮d4n+1⋮d
+) Vì : 2n+3⋮d;2∈N
⇒2(2n+3)⋮d⇒4n+6⋮d
Mà : 4n+1⋮d
⇒(4n+6)−(4n+1)⋮d
⇒4n+6−4n−1⋮d⇒5⋮d
⇒ d là ước của 5 ; d nguyên tố
⇒d=5
Với d=5⇒4n+1⋮5
⇒5n−n+1⋮5⇒5n−(n−1)⋮5
Vì : n∈N⇒5n⋮5
⇒n−1⋮5⇒n−1=5k⇒n=5k+1
Thử lại : n = 5k + 1 ( k∈N)
2n+3=2(5k+1)+3=10k+5=5(2k+1)⋮5
4n+1=4(5k+1)+1=20k+5=5(4k+1)⋮5
⇒ Với n = 5k + 1 thì phân số trên rút gọn được
⇒n≠5k+1 thì phân số trên tối giản
Vậy n≠5k+1