K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
2 tháng 8 2021

giả sử :

\(\hept{\begin{cases}a^2=n+5\\b^2=n+30\end{cases}\Rightarrow b^2-a^2=25}\) mà rõ ràng a,b là hai số tự nhiên và a<b

nên ta có : \(\left(b-a\right)\left(b+a\right)=5^2\Rightarrow\hept{\begin{cases}b-a=1\\b+a=25\end{cases}\Rightarrow\hept{\begin{cases}a=12\\b=13\end{cases}\Rightarrow}n=139}\)

13 tháng 7 2017

=> n+5 và n+30 là 2 số chình phương liền nhau:

Ta có: a2-b2= 25

=> (a-b)(a+b)=25 ; giả sử a=b+1 ( 2 số liên tiếp) thì:

=>(b+1-b)(b+1+b )=25

=>2b=24 => b=12; => a=13

=> a2=169; b2=144

=>n= 144-5=169-30=139;

CHÚC BẠN HỌC TỐT..........

13 tháng 7 2017

Với n+5 và n+30 là số chính phương

\(\left\{{}\begin{matrix}n+5=a^2\\n+30=b^2\end{matrix}\right.\) \(\Rightarrow n+5-n-30=a^2-b^2=\left(a-b\right)\left(a+b\right)=-25\)

Mà -25=-5.5=-1.25=-25.1


Giờ bn lập bảng các gt của a và b là đc

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12

13 tháng 5 2016

bài 2:

a)đặt n²-n+13=a²

=> 4n²-4n+52=4a²

=> (4n²-4n+1) +51=4a²

=>(2n-1)²+51=4a²

=>4a²-(2n-1)²=51

=>(2a-2n+1)(2a+2n-1)=51

vì (2a-2n+1) và (2a+2n-1) là 2 số lẻ và (2a-2n+1) > (2a+2n-1)

=>(2a-2n+1)=51, (2a+2n-1)=1 hoặc (2a-2n+1)=17,(2a+2n-1)=3

với (2a-2n+1)=51, (2a+2n-1)=1 =>n=-12

với(2a-2n+1)=17,(2a+2n-1)=3 =>n=-7/2 (L)

KL:n=-12