Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
mk nhớ là làm bài này rồi mà nhỉ, bạn kéo thanh cuốn xuống xíu là thấy bài của mk
1)(2x+1)(y-4)=12
Ta xét bảng sau:
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
2x | 0 | -2 | 1 | -3 | 2 | -4 | 3 | -5 | 5 | -7 | 11 | -13 |
x | 0 | -1 | 1 | -2 | ||||||||
y-4 | 12 | -12 | 4 | -4 | ||||||||
y | 16 | -8 | 8 | 0 |
2)n-7 chia hết cho n+1
n+1-8 chia hết cho n+1
=>8 chia hết cho n+1 hay n+1EƯ(8)={1;-1;2;-2;4;-4;8;-8}
=>nE{2;0;3;-1;5;-3;9;-7}
3)|x+3|+2<4
|x+3|<4-2
|x+3|<2
=>|x+3|=1 và |x+3|=0
=>x+3=1 hoặc x+3=-1 hay x+3=0
x=1-3 x=-1-3 x=0-3
x=-2 x=-4 x=-3
Vậy x=-2;-3 hoặc x=-4
Gọi d là ucln của 4n+7 và 2n+4
Ta có 4n+7 chia hết cho d
2n+4 chia hết cho d
=> 4n+7 chia hết cho d
2(2n+4) chia hết cho d
=> 4n+7 chia hết cho d
4n+8 chia hết cho d
=> (4n+8)-(4n+7) chia hết cho d
=> 1 chia hết cho d
=> d thược u(1)
=> d=1
Vậy ucln của 4n+7 và 2n+4 là 1
Gọi \(d\inƯC\left(4n+7,2n+4\right)\) vs \(d\inℕ^∗\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2n+4⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+4\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow4n+8-\left(4n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\RightarrowƯCLN\left(4n+7,2n+4\right)=1\)