Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0
⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0
Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔
(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1
2. có x^2 + 4xy + 4y^2 -2(x+2y) + 10
= (x+2y)^2 - 2(x+2y) +10
= 5^2 - 2x5 +10
= 25
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
\(4x^2+4xy+2y^2-4x-4y+2=0\)
\(\Rightarrow4x^2+4xy+y^2-4x-2y+1+y^2-2y+1=0\)
\(\Rightarrow\left(2x+1\right)^2-2\left(2x+1\right)+1+\left(y-1\right)^2=0\)
\(\Rightarrow\left(2x+1-1\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow4x^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}4x^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)
Lời giải:
$A=a^2+ab+b^2-3b-3a+3$
$4A=4a^2+4ab+4b^2-12a-12b+12$
$=(4a^2+4ab+b^2)-12a-12b+3b^2+12$
$=(2a+b)^2-6(2a+b)+9+(3b^2-6b+3)$
$=(2a+b-3)^2+3(b-1)^2\geq 0+3.0=0$
Vậy $A_{\min}=0$. Giá trị này đạt tại $2a+b-3=b-1=0$
$\Leftrightarrow b=1; a=1$
Câu B tương tự câu A nhé. Chỉ khác mỗi đặt tên biến.
---------------
$C=x^2+5y^2-4xy+2y-3$
$=(x^2-4xy+4y^2)+(y^2+2y)-3$
$=(x-2y)^2+(y^2+2y+1)-4$
$=(x-2y)^2+(y+1)^2-4\geq 0+0-4=-4$
Vậy $C_{\min}=-4$. Giá trị này đạt tại $x-2y=y+1=0$
$\Leftrightarrow y=-1; x=-2$
\(4x^2+y^2+4xy+4x+2y+2\)
\(=\left(2x+y\right)^2+2.\left(2x+y\right)+1+1\)
\(=\left(2x+y+1\right)^2+1>0\forall x,y\)
Chúc bạn học tốt.
Bài 1:
a. A = x^2 - 5x - 1
\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)
\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)
Dấu = khi x=5/2
Vậy MinC=-29/4 khi x=5/2
2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )
=>4x2-12x+9+1-16x2=-14x2+13x-3
=>-12x2-12x+10=-14x2+13x-3
=>2x2-25x+13=0
\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)
\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)
\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)
\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)
c. 4.( x - 3 ) - ( x + 2 ) = 0
=>4x-12-x-2=0
=>3x-14=0
=>3x=14
=>x=14/3
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)
a) 4x2 + y2 + 4xy + 4x + 2y + 3
= ( 4x2 + 4xy + y2 + 4x + 2y + 1 ) + 2
= [ ( 4x2 + 4xy + y2 ) + ( 4x + 2y ) + 1 ] + 2
= [ ( 2x + y )2 + 2( 2x + y ).1 + 12 ] + 2
= ( 2x + y + 1 )2 + 2 ≥ 2 ∀ x, y
Dấu "=" xảy ra <=> 2x + y + 1 = 0
<=> 2x = -y - 1
<=> x = \(\frac{-y-1}{2}\)
Vậy GTNN của biểu thức = 2 <=> x = \(\frac{-y-1}{2}\)
b) -x2 - y2 - 2xy
= -( x2 + 2xy + y2 )
= -( x + y )2 ≤ 0 ∀ x, y
Dấu "=" xảy ra khi x = -y
Vậy GTLN của biểu thức = 0 <=> x = -y