Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/y=3/4
=>x/3=y/4
=>x/15=y/20
y/z=5/7
=>y/5=z/7
=>y/20=z/28
=>x/15=y/20=z/28=(2x+3y-z)/(2*15+3*20-28)=186/62=3
=>x=45; y=60; z=84
\(\dfrac{x}{9}\) < \(\dfrac{4}{7}\) < \(x\) + \(\dfrac{1}{9}\)
\(\dfrac{7x}{63}\) < \(\dfrac{36}{63}\) < \(\dfrac{63x}{63}\) + \(\dfrac{7}{63}\)
7\(x\) < 36 < 63\(x\) + 7
⇒\(\left\{{}\begin{matrix}7x< 36\\63x+7>36\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>36-7\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>29\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\x>\dfrac{29}{63}\end{matrix}\right.\)
\(\dfrac{29}{63}\)< \(x\) < \(\dfrac{36}{7}\) vì \(x\in\) Z nên \(x\in\) { 1; 2; 3; 4; 5}
⇒ \(\dfrac{x}{9}\) = \(\dfrac{1}{9}\); \(\dfrac{2}{9}\); \(\dfrac{3}{9}\); \(\dfrac{4}{9}\);\(\dfrac{5}{9}\)
\(\dfrac{x}{9}< \dfrac{4}{7}< \dfrac{x+1}{9}\)
=>\(\dfrac{7x}{63}< \dfrac{36}{63}< \dfrac{7x+7}{63}\)
\(\Rightarrow7x< 36< 7x+7\)
\(\Rightarrow x< \dfrac{36}{7}< x+1\)
\(\Rightarrow x< 5\dfrac{1}{7}< x+1\)
\(\Rightarrow x=5\)
a) | 9 + 7x | = 3 - 5x
\(\Rightarrow\orbr{\begin{cases}9+7x=3-5x\\9+7x=-\left(3-5x\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}7x+5x=3-9\\9+7x=-3+5x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}12x=-6\\7x-5x=-3-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\2x=-12\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1}{6}\\x=-6\end{cases}}\)
Câu 4:
Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\left|2y+3\right|\ge0\forall y\)
Do đó: \(\left|x+2\right|+\left|2y+3\right|\ge0\forall x,y\)
Dấu '='xảy ra khi x=-2 và \(y=-\dfrac{3}{2}\)
Câu 11:
=>4,6x=6,21
=>x=1,35
12: \(A=-\left(1.4-x\right)^2-1.4< =-1.4\)
=>x=-1,4
Câu 9:
\(\Leftrightarrow\dfrac{10a+b}{100c+90+d}=\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+...+\dfrac{1}{92}-\dfrac{1}{97}=\dfrac{1}{2}-\dfrac{1}{97}=\dfrac{95}{194}\)
=>a=9; b=5; c=1; d=4
=>a+b+c+d=9+5+1+4=19
=>(2x-1)^2=24^2
=>2x-1=24 hoặc 2x-1=-24
=>x=-23/2 hoặc x=25/2
Ta có: A = |x - 2001| + |x - 1|
A = |x - 2001| + |1 - x| \(\ge\)|x - 2001 + 1 - x| = |-2000| = 2000
Dấu "=" xảy ra khi : x - 2001 + x - 1 = 0
<=> 2x - 2002 = 0
<=> 2x = 2002
<=> x = 1001
Vậy Min A = 2000 tại x = 1001